Chapter 11: Fundamental Theorem of Abelian Groups/Chapter 24: Sylow Theorems

Bret Benesh
College of St. Benedict/St. John’s University
Department of Mathematics

Math 331

Outline

1. **Fundamental Theorem of Abelian Groups**
2. **The Sylow Theorems**
3. **An application of the Sylow Theorems**

Definition

If G and H are groups, the *direct product* $G \times H$ is the set
\[\{(g, h) \mid g \in G, h \in H\} \]

Example

$C_3 \times C_6 = \{(0,0), (0,1), (0,2), (0,3), (0,4), (0,5), (1,0), (1,1), (1,2), (1,3), (1,4), (1,5), (2,0), (2,1), (2,2), (2,3), (2,4), (2,5)\}$

The operation is $(2,4) + (0,3) = (2 + 0, 4 + 3) = (2,7) = (2,1)$

Example

Note that $C_6 \cong C_2 \times C_3$ by $\phi((a,b)) = 3a + 4b$. So $\phi((1,1)) = 1$. (this works because 2 and 3 are relatively prime).

Theorem (Fundamental Theorem of Abelian Groups)

Let G be a finite abelian group. Then $G \cong C_{p_1^{n_1}} \times C_{p_2^{n_2}} \times \ldots \times C_{p_m^{n_m}}$, where the p_i are primes (although not necessarily distinct). Moreover, the p_i and m are uniquely determined.

Proof.

In Gallian’s textbook, but we will not discuss in class.
Example

Suppose G is a finite abelian group of order $32 = 2^5$. Then G is isomorphic to one of the following:

- C_{32} corresponds to the partition (5)
- $C_{16} \times C_2$ corresponds to the partition $(4 + 1)$
- $C_8 \times C_4$ corresponds to the partition $(3 + 2)$
- $C_8 \times C_2 \times C_2$ corresponds to the partition $(3 + 1 + 1)$
- $C_4 \times C_4 \times C_2$ corresponds to the partition $(2 + 2 + 1)$
- $C_4 \times C_2 \times C_2 \times C_2$ corresponds to the partition $(2 + 1 + 1 + 1)$
- $C_2 \times C_2 \times C_2 \times C_2 \times C_2$ corresponds to the partition $(1 + 1 + 1 + 1 + 1)$

Example

Suppose G is a finite abelian group of order $360 = 2^3 \cdot 3^2 \cdot 5$. Then G is isomorphic to one of the following:

- $C_8 \times C_9 \times C_5 \cong C_{360}$
- $C_8 \times C_3 \times C_3 \times C_3$
- $C_2 \times C_4 \times C_9 \times C_3$
- $C_2 \times C_4 \times C_3 \times C_3 \times C_5$
- $C_2 \times C_2 \times C_2 \times C_3 \times C_5$
- $C_2 \times C_2 \times C_2 \times C_3 \times C_3 \times C_5$

Significance of the Fundamental Theorem of Abelian Groups

If you want to know about abelian groups, you only need to know about direct products of cyclic groups of prime power order.
Theorem (Lagrange’s Theorem)

Let G be a finite group and H be a subgroup of G. Then $|H|$ divides $|G|$.

Big Question: Is the converse of Lagrange’s Theorem true? i.e. Is it true that if n divides $|G|$, then G has a subgroup of order n?

No. We have already seen that A_4 ($|A_4| = 12 = 2 \cdot 6$) has no subgroup of order 6.

New Big Question: When is the converse of Lagrange’s Theorem true?

New Big Question: When is the converse of Lagrange’s Theorem true?

- All divisors of finite abelian groups
- The next theorem shows it is true for some divisors of all finite groups.

Theorem

The converse of Lagrange’s Theorem is true for all finite abelian groups.

Example

Let G be an abelian group of order $360 = 2^3 \cdot 3^2 \cdot 5$, and suppose $G \cong C_2 \times C_2 \times C_2 \times C_3 \times C_5$. We will find a subgroup of order 60 = $2^2 \cdot 3 \cdot 5$.

We can take the subgroup generated by $(0,1,1,3,1)$. Note that

$\langle (0,1,1,3,1) \rangle \cong \{e\} \times C_2 \times C_2 \times C_3 \times C_5$,

which has order $1 \cdot 2 \cdot 2 \cdot 3 \cdot 5 = 60$.

Theorem

Let G be a finite group and p be a prime such that p^n divides $|G|$. Then G has a subgroup of order p^n.

Corollary (Cauchy’s Theorem)

Let G be a finite group, and p be a prime that divides $|G|$. Then G has an element of order p.

Theorem (Sylow E (for “existence”))

Let G be a finite group and p be a prime that divides $|G| = p^n m$, where p does not divide m. Then G has a subgroup of order p^n.
Definition
Let p be a prime number. A finite p-group is a group of order p^m for some integer m.

Definition
A Sylow p-subgroup of a group G is a subgroup as the Sylow E Theorem.

Example
Consider S_4. Then $|S_4| = 24 = 2^3 \cdot 3$. We will find a subgroup of order $2^3 = 8$ and 3.
- Let $H = \{(1,2,3), (1,3,2), (2,4), (1,4,2,3), (3,4), (1,2)(3,4), (1,3,2,4), (1,4)(2,3)\}$. Then H is a subgroup (verify!) and $|H| = 2^3 = 8$.
- So $\langle (1,2,3) \rangle$ is a Sylow 3-group of S_4 and H is a Sylow 2-group of S_4.

Theorem
Let G be a finite group and p be a prime such that p^n divides $|G|$. Then G has a subgroup of order p^n.

Corollary (Cauchy's Theorem)
Let G be a finite group, and p be a prime that divides $|G|$. Then G has an element of order p.

Theorem (Sylow E (for "existence"))
Let G be a finite group and p be a prime that divides $|G| = p^am$, where p does not divide m. Then G has a subgroup of order p^a.

Theorem (Sylow D (for "development"))
Let G be a finite group and $P \subseteq G$ be a p-subgroup. Then there exists a Sylow p-subgroup Q such that $P \subseteq Q$.

Theorem (Sylow C (for "conjugacy"))
Let G be a finite group and $P, Q \subseteq G$ be Sylow p-subgroups. Then there exists a $g \in G$ such that $P^g = Q$.

Corollary
Let G be a finite group and $P, Q \subseteq G$ be Sylow p-subgroups. Then $P \cong Q$.
Theorem (Sylow counting)

Let G be a finite group such that $|G| = p^a m$ where p does not divide m. Let n_p be the number of Sylow p-subgroups of G. Then $n_p \equiv 1 \mod p$ and n_p divides m.

Corollary

If P is the unique Sylow p-subgroup of a finite group G, then P is normal in G.

Example

The Sylow 2-subgroups of S_3 ($|S_3| = 2 \cdot 3$) are: $\langle (1,2) \rangle$, $\langle (1,3) \rangle$, and $\langle (2,3) \rangle$. So we have Sylow E, since one exists.

Since $\langle (1,3) \rangle^{(2,3)} = \langle (1,2) \rangle$, $\langle (2,3) \rangle^{(1,3)} = \langle (1,2) \rangle$, and $\langle (2,3) \rangle^{(1,2)} = \langle (1,3) \rangle$, Sylow C holds in S_3 for $p = 2$.

Since there are $3 \equiv 1 \mod 2$ Sylow 2-subgroups in S_3 and 3 divides $6 = |S_3|$, we see that Sylow Counting holds.

Note that there is $1 \equiv 1 \mod 3$ Sylow 3-subgroup in S_3 (namely, $\langle (1,2,3) \rangle$), so Sylow E, C, and Counting hold (since 1 divides $6 = |S_3|$). (and the Sylow 3-subgroup is normal in G).

Theorem

There are no simple groups of order 12.

Proof.

Let G be a group such that $|G| = 12 = 2^2 \cdot 3$. Let n_3 be the number of Sylow 3-subgroups of G, and n_2 be the number of Sylow 2-subgroups of G. If $n_3 = 1$, we are done by a previous corollary. So we may assume that $n_3 > 1$.

Since n_3 divides 2^2 (since $|G| = 3 \cdot m$ with $m = 2^2$), we know that $n_3 \in \{1, 2, 4\}$. Since $n_3 > 1$ by assumption, $n_3 = 2$ or $n_3 = 4$. Since $2 \not\equiv 1 \mod 3$, we conclude $n_3 = 4$.

Now we count elements. Since each subgroup of order 3 contains two unique non-identity elements, we know that G has $2 \cdot n_3 = 2 \cdot 4 = 8$ elements of order 3.

Proof (continued).

Let X be the set of elements we have not counted yet. Then $|X| = |G| - 8 = 4$. But this is the size of the Sylow 2-subgroup, so there can only be one Sylow 2-subgroup. By a previous corollary, this Sylow 2-subgroup must be normal, and G is not simple.
Theorem
There are no simple groups of order p^2q for primes p and q.

Proof.
Let G be a group such that $|G| = p^2q$. Let n_q be the number of Sylow q-subgroups of G, and n_p be the number of Sylow p-subgroups of G. If $n_q = 1$, we are done by a previous Corollary. So we may assume that $n_q > 1$.

Since n_q divides p^2 (since $|G| = q \cdot m$ with $m = p^2$), we know that $n_q \in \{1, p, p^2\}$. Since $n_q > 1$ by assumption, $n_q = p$ or $n_q = p^2$.

Suppose $n_q = p$. Then $p \equiv 1 \pmod{q}$, and in particular, $p > q$. Therefore, $q \not\equiv 1 \pmod{p}$, so $n_p \neq q$. Then $n_p = 1$ and we have a normal Sylow p-subgroup.

So we may assume $n_q = p^2$, and we count elements. Since each subgroup of order p contains $(q - 1)$ unique non-identity elements, we know that G has $(q - 1) \cdot n_q = (q - 1)p^2$ elements of order q.

Let X be the set of elements we have not counted yet. Then $|X| = |G| - (q - 1)p^2 = p^2q - (q - 1)p^2 = p^2$. But this is the size of the Sylow p-subgroup, so there can only be one Sylow p-subgroup. By a previous corollary, this Sylow p-subgroup must be normal, and G is not simple.