SIMPLE KINETIC DERIVATIONS OF THERMODYNAMIC RELATIONS

HENRY A. BENT
NORTH CAROLINA STATE UNIVERSITY
RALEIGH, N. C. 27650

FRANK RIoux
SAINT JOHN'S UNIVERSITY
COLLEGEVILLE, MN 56321
INTRODUCTION

Kinetics and thermodynamics seem like very different disciplines. They emphasize different phenomena (change; equilibrium) and introduce different concepts (rate constants; energy/entropy). It is not widely known that a useful connection between those disparate fields was suggested late in the 19th Century by Svante Arrhenius when he introduced the concept of the activated molecule to account for the exponential dependence on temperature of kinetic rate constants (1,2). Textbook accounts of Arrhenius's rate-constant law fail to reveal the creative use Arrhenius made of thermodynamic principles in his analysis of the temperature dependence of chemical reaction rates and, thus, fail to exploit Arrhenius's insights in the teaching of thermodynamics.

After a brief review of Arrhenius's work, we will show that the relations of classical thermodynamics of chief interest to chemists can be obtained by simple algebra from elementary rate laws and Arrhenius's rate constant expression

\[k = Ae^{-\frac{\Delta H^*/RT}{}} \]

THE ORIGIN OF ARRHENIUS'S RATE CONSTANT EXPRESSION (1)

Facts

Reaction rates have significant temperature dependencies (typically on the order of ±8 percent per degree), which cannot be accounted for by increased gas-phase collision frequencies or decreased liquid-phase viscosities.

For all practical purposes, the concentration of reactant molecules are not temperature dependent.

Hypothesis

Since the concentration of a reactant (M) does not vary with temperature, the actual reactant species (in a uni-
molecular reaction) might be an activated form of the molecule \(M^* \), with
\[
\text{Rate} = \mathcal{A}(M^*)
\]
where the constant \(\mathcal{A} \) is independent of temperature and \((M^*) \) is directly proportional to \((M) \) and is sharply dependent on temperature
\[
(M^*) = k(T) \ (M)
\]
\[\text{(b)}\]

Implications

Relationship (b) can be substituted into (a)
\[
\text{Rate} = \mathcal{A} k(T) \ (M)
\]
\[\text{(c)}\]
which emphasizes that \(k(T) \) is a kinetic rate parameter.

Relationship (b) can be re-written as
\[
k(T) = (M^*)/(M)
\]
\[\text{(d)}\]
which emphasizes that \(k(T) \) is, also, a thermodynamic parameter: an equilibrium constant. As such it satisfies
van't Hoff's expression
\[
\frac{d \ln k(T)}{dT} = \frac{\Delta H^*}{RT^2}
\]
\[\text{(e)}\]
where \(\Delta H^* \) is the enthalpy change accompanying the formation of \(M^* \) from \(M \)—the enthalpy of activation. If over small temperature intervals \(\Delta H^* \) may be treated as constant, the integrated form of expression (e) is essentially expression (1): \(k(T) = A e^{-\Delta H^*/RT} \), where \(A \) is a constant independent of \(T \). As indicated in Fig. 1 (f = forward, b = backward),
\[
\Delta f H^* - \Delta b H^* = \Delta H = \Delta E + \Delta (PV)
\]
\[\text{(2)}\]

Discussion

Thermodynamics played a large role in Arrhenius's elucidation of the temperature dependence of rate constants. It is not surprising, then, that the relations of classical thermodynamics can be obtained from elementary rate laws and Arrhenius's rate-constant expression. Below are eight illustrative examples of simple kinetic derivations of thermodynamic relations.

1 Arrhenius employed van't Hoff's equation in the form
\[
d(ln \ k)/dT = q/RT^2
\]
Under the usual conditions of constant pressure \(q = \Delta H \). This accounts for our use of \(\Delta H^* \) rather than \(E_a \) in equation (1).
CLAPEYRON'S EQUATION FOR CONDENSED PHASES

In this analysis and those that follow, the simplest mechanism consistent with the over-all stoichiometry is employed. It is not difficult to show that more complicated mechanisms would yield the same result (see paper by Frost cited in footnote 2).

For equilibrium with respect to the change

\[X(\text{solid}) \xrightleftharpoons[k_f]{k_b} X(\text{pure liquid}) \]

\[R_f(\text{melting rate}) = k_f = R_b (\text{freezing rate}) = k_b. \]

The concentrations of pure substances are constant and therefore absorbed in the rate constants. Thus, by (1), at equilibrium

\[-\Delta_f H^*/RT = -\Delta_b H^*/RT \]

\[A_f e = A_b e \]

Hence, by (2), on taking logarithms,

\[\frac{\Delta E + P \Delta V}{RT} = \ln \frac{A_f}{A_b} = \text{constant} \]

For equilibrium to be maintained when \(T \) and \(P \) change from values satisfying the above expression to new values \(T + dT \) and \(P + dP \), \(dT \) and \(dP \) must be such that

\[\frac{\Delta E + (P + dP) \Delta V}{R(T + dT)} = \frac{\Delta E + P \Delta V}{RT} \]

Simplification yields Clapeyron's equation

\[\frac{dP}{dT} = \frac{\Delta H}{T \Delta V} \quad (3) \]

IDEAL SOLUBILITY AND FREEZING POINT DEPRESSION

For equilibrium with respect to the change

\[X(\text{solid}) \xrightarrow[k_f]{k_b} X(\text{ideal solution}) \]

\[R_f(\text{melting or solution rate}) = k_f = R_b (\text{freezing or precipitation rate}) = k_b N_x. \]

Thus, by (1) and (2), for all mole fractions \(N_x \),

\[\ln \frac{A_f}{A_b} = \frac{\Delta H}{RT} + \ln N_x = \frac{\Delta H}{RT} \bigg|_{N_x=1} = \frac{\Delta H}{RT_{NP}}. \]
Hence,

\[\ln N_x = \frac{\Delta H}{R} \left(\frac{1}{T_{\text{nfp}}} - \frac{1}{T} \right) = \frac{\Delta H(T - T_{\text{nfp}})}{RT_{\text{nfp}}} \]

(4)

For \(N_x \approx 1 \), \(T \approx T_{\text{nfp}} \) (of \(X \)), \(\ln N_x \approx N_x - 1 \approx -N_2 \) and

\[-(T - T_{\text{nfp}}) \approx \frac{RT^2_{\text{nfp}}}{\Delta H} N_2 \]

(5)

OSMOTIC EQUILIBRIUM

For equilibrium with respect to the change

\[X(\text{pure liquid}) \xrightarrow{k_f} X(\text{ideal solution}) \xleftarrow{k_b} \]

Pressure: \(P \quad P + \pi \)

Mole Fraction: \(N_x = 1 \quad N_x < 1 \)

\(R_f = k_f = R_b = k_b N_x \). Thus, by (1) and (2),

\[\ln \frac{A_f}{A_b} = \frac{\Delta E + \Delta(PV)}{RT} + \ln N_x \]

In this instance: \(\Delta E = \Delta V = 0 \)

\(\Delta(PV) = (P + \pi) \bar{V}_x - P \bar{V}_x = \pi \bar{V}_x \).

Hence,

\[\ln \frac{A_f}{A_b} = \frac{\pi \bar{V}_x}{RT} + \ln N_x. \]

For \(N_x = 1 \), \(\pi = 0 \). Thus \(\ln (A_f/A_b) = 0 \).

Hence,

\[\pi = -\frac{RT}{\bar{V}_x} \ln N_x \approx \frac{RT\bar{V}_2}{\bar{V}_x} \approx RTC_2 (N_2 << 1) \]

(6)
CHEMICAL EQUILIBRIUM

For equilibrium with respect to the change

\[aA + bB = cC + dD \]

the Principle of Microscopic Reversibility states that the rate at which A and B disappear by the (perhaps unlikely) mechanism \(aA + bB \), rate law \(R_f = k_f C_A^a C_B^b \), is equal to the rate at which A and B appear by the mechanism cC + dD, rate law \(R_b = k_b C_C^c C_D^d \). Thus, with (1) and (2), one obtains

\[K = \frac{C_C^c C_D^d}{C_A^a C_B^b} \] \[k_f = \frac{k_f}{k_b} = \frac{A_f}{A_b} e^{-\Delta H/RT} \] \[\text{(7a)} \]

or,

\[\ln K + \frac{\Delta H}{RT} = \ln \frac{A_f}{A_b} = \text{constant} \] \[\text{(7b)} \]

If T changes from \(T_1 \) to \(T_2 \), the change in K, from \(K_1 \) to \(K_2 \), must be such that, by (7b),

\[\ln \frac{K_2}{K_1} = \frac{\Delta H}{RT} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \] \[\text{(8)} \]

BOLTZMANN'S FACTOR

For equilibrium with respect to the simple "chemical" change

\[X(\text{quantum state } i) \xrightarrow{\text{f}} \frac{X(\text{quantum state } j)}{b} \]

one has by (7a) that

\[K = \frac{C_j^d}{C_i^a} = \frac{A_f}{A_b} e^{-\Delta H/RT} \]

In this instance: \(A_f = A_b \)

\[
\Delta H = \Delta E + P\Delta V = \Delta E = N_A (\varepsilon_j - \varepsilon_i).
\]

\[
C_j/C_i = N_j/N_i
\]

Hence,

\[
\frac{N_j}{N_i} = e^{-(\varepsilon_j - \varepsilon_i)/kT} \quad (k = R/N_A) \quad (9)
\]

ELECTROCHEMICAL EQUILIBRIUM

For equilibrium with respect to the flow of electrons in an electrochemical circuit

\[
e(\text{potential } V_1) \frac{k_f}{k_b} e(\text{potential } V_2)
\]

\(R_f = k_f = R_b = k_b \). Thus, by (1),

\[
\ln \frac{A_f}{A_b} = \frac{\Delta_f \hat{H}^* - \Delta_b \hat{H}^*}{RT}
\]

The activation enthalpies contain in this instance two contributions: one from the enthalpy of activation of the chemical change to which the electron flow is coupled in an electrochemical cell; the other from the enthalpy of activation for the physical transfer of electrons across a potential difference \(E = V_2 - V_1 \). In this instance, \(\Delta_f \hat{H}^* - \Delta_b \hat{H}^* = \Delta H + nF \).

Hence,

\[
\ln \frac{A_f}{A_b} = \frac{\Delta H + nF}{RT}
\]

For equilibrium to be maintained when \(T \) and \(E \) change from values satisfying the above expression to new values \(T + dT \) and \(E + dE \), \(dT \) and \(dE \) must be such that

\[
\frac{\Delta H + nF(E + dE)}{R(T + dT)} = \frac{\Delta H + nF}{RT}
\]
Simplification yields

\[nF \frac{dE}{dT} = \Delta H + nFE \]

By the First Law, \(\Delta H + nFE = Q_{\text{rev}} \).

Hence,

\[nF \frac{dE}{dT} = \frac{Q_{\text{rev}}}{T} \quad (10) \]

Equation (10) is a special instance of the general thermodynamic relation

\[\frac{dW_{\text{rev}}}{dT} = \frac{Q_{\text{rev}}}{T} \quad \text{Alternatively:} \quad \frac{dW_{\text{rev}}}{Q_{\text{rev}}} = \frac{dT}{T} \quad (11) \]

[In Gibbs-Clausius notation: \(\frac{\partial (\Delta G)}{\partial T} = -\Delta S \)]

Equation (11) is, in turn, a special instance of the Kelvin-formula for the efficiency of a reversible heat engine.

\[\varepsilon_{\text{rev}} = \frac{T_2 - T_1}{T_2} \quad (12) \]

MECHANICAL EQUILIBRIUM

For equilibrium with respect to a change in the energy \(E \) of a purely mechanical system, say a change in altitude, \(h \), of a weight, \(wt \),

\[wt(E_i = Mgh_i) \xrightarrow{\text{f}} wt(E_j = Mgh_j) \quad (13) \]

\(R_f = k_f = R_b = k_b \). Hence, by (1) and (2) with, again, \(A_f = A_b \),

\[\frac{R_f}{R_b} = \frac{k_f}{k_b} = e^{-\frac{(E_j - E_i)}{kT}} = e^{-\frac{\Delta E_{\text{wt}}}{kT}} \quad (14) \]

For, for example, \(\Delta h = 0.1m, M = 0.05 \text{ kg}, \) and \(g = 9.8 \text{ m/s}^2 \), \(\Delta E_{\text{wt}} = 0.049J \). Thus, at \(T = 300 \text{ K} \) \((k = 1.38 \times 10^{-23} \text{J}) \),

\[\frac{R_f}{R_b} = 10^{(18.7)} \]
BOLTZMANN'S RELATION

For change (13) let the number of macroscopically indistinguishable, microscopically distinct quantum states accessible jointly to the mechanical system wt and its thermal surroundings \(\Theta \) in \((wt + \Theta)\)'s initial state \(i \), its transition state \(* \), and its final state \(j \) be denoted, respectively, \((\Omega_{\text{total}})_i \), \((\Omega_{\text{total}})_* \), and \((\Omega_{\text{total}})_j \). If all quantum states are, \textit{a priori}, equally probable, \(R_f = k[(\Omega_{\text{total}})_*/(\Omega_{\text{total}})_i] \) and \(R_b = k[(\Omega_{\text{total}})_*/(\Omega_{\text{total}})_j] \). Thus, for equilibrium with respect to change (13), by (14),

\[
\frac{(\Omega_{\text{total}})_j}{(\Omega_{\text{total}})_i} = e^{\frac{\Delta E_{\text{wt}}}{kT}} \quad (15)
\]

By the First Law, for a universe \(wt + \Theta \), \(-\Delta E_{\text{wt}} = \Delta E_{\Theta} \). By the Second Law, \(\Delta E_{\Theta}/T = \Delta S_{\Theta} \). By the law of statistical independence, \(\Omega_{\text{total}} = \Omega_{\Theta} \cdot \Omega_{wt} \). And by the law of the reversibility of purely mechanical changes, \(\Omega_{wt} = \text{constant} \). Thus, by (15),

\[
\frac{(\Omega_{\Theta})_{\text{final}}}{(\Omega_{\Theta})_{\text{initial}}} = e^{\frac{\Delta S_{\Theta}}{k}} \quad (16)
\]

By the Third Law, \(S = 0 \) when \(\Omega = 1 \) (for example, a perfect crystal at \(T = 0 \) K). Thus, by (16), for systems in internal equilibrium,

\[
S = k \ln \Omega \quad (17)
\]
SUMMARY AND CONCLUDING COMMENTS

Arrhenius's expression (1) embodies in a form immediately applicable to chemical problems those implications of the Second-Law-like behavior of Nature of particular interest to chemists. It is, from a chemical point of view, a more quickly and easily used expression of the Second Law than is the more widely applicable but, though mathematically simpler, chemically more remote expression (12).

Expression (1) is in a certain sense, said Arrhenius, "a paraphrase of the observed facts" (1). It is an axiomatization of a nearly universal feature of chemical reactions. If chemical (and physical) changes had no enthalpies of activation, it would be impossible to store energy--as, for example, fat or fuel plus oxygen. Everything would slide quickly to equilibrium, including the sun. Without energy barriers there would be no life--and energy crises.

Arrhenius's expression (1) is based on van't Hoff's thermodynamic expression \(K = C e^{-\Delta H/RT} \) (1,2). Thus, the kinetic derivations above are not, in a logical sense, substitutes for thermodynamic arguments. It is often instructive, however, to see abstract expressions emerge unexpectedly from concrete, special instances.

The present mathematical procedures can be used without change in purely thermodynamic arguments. From the expression \(K = C e^{-\Delta H/RT} \) one can obtain quickly, as above, expressions (3) - (10) without using calculus, the entropy function, the chemical potential, or Carnot's cycle.

Conventional expressions that involve the entropy function can be obtained from the present discussion by introducing the abbreviation \(\Delta S = R \ln (A_0/A_b) \).
LITERATURE CITED

