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THERMODYNAMICS AND KINETICS

Host thermodynamic expressions in textbooks are "intramural" relations. They
tell us how to determine numerical values for unfamiliar quantities, such

as AS and AG (equns. la,b, for example), or how one such quantity depends on another

such quantity (eqms. le,d).

Q
AS = f_,ev AG® = -RT InK_
(a) (b)
(1)
[ s o
AG = AH - TAS [ar ] - -4s
(c) (d)

Only 2 few thermodynamic expressions are "extramural" relations--ones that
tell us immediately something about "directly measurable" or familiar quantities:
how, for example, an equilibrium pressure P, or concentration N2, or quotient of

concentrations K or cell voltage £ varies with temperature (eqns, 2a-d).

e _ g N, g
dT = TAV dt, = __2
fp RTnfp
(a)
(b)
(2)
K Q Qr
ln'K—z- - irrev |1 __1._ - a& ev
3 R T, T, dT T
(e) - - (d)

These extramural relations (2a-d) show how equilibrium parameters (P, Nz, K,}g )

must change with temperature if perpetual motion of the second kind is impossible,



la

Perpetual motion of the second kind is production of work (an increase in
energy of a mechanical system) solely at the expense of the energy of a thermal
reservoir. In its net effect upon the ehvironment, it is, With respect to energy
transformations, precisely the opposite of friction.

The most general statement of the Second-Law-like behavior of Nature states
that any process whose net effect is precisely the opposite of friction--or heat
flow, or any natural event--is impossible. From that statement can be developed
by relatively long and mathematically demanding arguments, as shown in many physical
chemistry texts, the extramural relations (2a-d).

It is the chief purpose of this paper to show that the Clapeyron equation (2a),
the colligative property relations (such as 2b), van't Hoff's relation (2c), Gibbs-
"Helmholtz-type equations (such as 2d) énd, also (discussed later), the osmotic pres-
sure law (eqn. 19), Boltzmann's factor (eqn. 25), and Carnot's theorem (eqn, 35) can
be obtained directly from the laws of chemical kinetics, without the use of calculus.

Our kinetic derivations of the extramural relations of thermodynamics are
‘ based on Arrhenius's rate-constant expression k = Aexp(-AH*/RT). It will be shown
that the derivations depend ultimately, therefore, on van't Hoff's thermodynamic
equilibrium-constant expression K = Cexp(-AH/RT). Thus, the kinetic derivations
are not, in a logical sense, a substitute for the usual thermodynamic arguments.

It is often illuminating, however, to see abstract expressions (such as those of
thermodynamics) emerge seemingly unexpectedly from more concrete equations ( those
of chemical kinetics).

The mathematical procedures in this paper can be used, also, in purely thermo-
dynamic arguments. With no change in the algebraic steps given below, one can
derive the extramural relations of thermodynamics directly from the thermodynamic
expression K = Cexp(-AH/RT). Thus one can move rigorously and easily from one

extramural relation to another without employing calculus and the entropy function



(or the chemical potential), or Carnot cycles. This simplification of the syntax
of thermodynamics serves tc emphasize an essential point: Thereis essentially only
one physically independent extramural thermodynamic relation, Thereis only one
Second Law. Expressions (2a-d), the osmotic pressure rule (19), and Boltzmann's
factor (25) are all special instances of Carnot's theorem (35).

In summary the present discussion is, simultaneously: a set of novel
applications to thermodynamics of Arrhenius's rate-constant expression; a non-
calculus review from several new points of view of the central exﬁressions of
classical (and, briefly, statistical) thermodynamics; and, in closing, a brief

-account of the origins in kinetics 2nd thermodynamics of activated complex theory.

Henry's Law and Raoult's Law

Many texts give this kinetic interpretation of the Laws of Henry and Raoult.

Consider the change

ke

5

Let Rf(b) represent the rate of the forward(backward) reaction, specific rate

X(soln) X(gas). (3)

constant kf(b)‘ Let CX be the concentration (in any units) of X in the condensed
" phase, NX its mole fraction therein, PX its partial pressure in the gas phase,

P§ the vapor pressure of pure X. On the assumption that

Rf = kax _ | (4a)

R Rl @4»)

#



one has that at equilibrium (Rf = Rb)

Py = (kp/lg)C = KeqCx (5)
Keq = PXICX =1 Henry's Law {5a)
- PXICX =N, =1 Raoult's Law (5b)

= P;{. " "

Similar derivations of mathematical expressions for other colligative properties
can be achieved by intfoducing Arrhenius's expression for the dependence upon

temperature (and pressure) of the specific rate constants kf and kb.

Arrhenius*s Rate-Constant Law

According to Arrhenius (in modern notation), for forward and backward reactions

K = Ae OBX/RT | (6)

where, over small temperature intervals, A and AH* may be treated as constants,

and where, Fig. 1,

[

AfH* - AbH* A - (7a)

H- - .
products Hreactlons

AE + A(PV). {(7b)

The Ideal Solubility Equation and Freezing Point Depressions

To illustrate the use of the Arrhenius Rate-Constant Law to obtain by a
kinetic analysis expressions normally obtained through reasoning based on thermo-~

dynamic principles, consider the sclution, or melting, of a pure solid.



ke

X(pure solid) T  X(solution) (8)

On the assumption that R_ = kf and Rb = kbNX’ cne has that, at equilibrium,

£
kf = kbNX or, on using the Arrhenius expression, (6), that Afexp(—AfH*/RT) =
NXAbexp(—AbH*/RT). Rearrangement and use of (7a) yields

A .
s Nxe.AH/RT (9)

A

AH is the enthalpy of solution, or melting, of X. Taking the natural logarithm

of both sides of (8), one obtains

A
AH B °f )
BT + ln.Nx_- in Ab, a constant (9a)
i |
RT _ .
Nx =1 (9b)
_AH
= BT (9¢c)
nfp
From (9¢),
_m (1 1
ln(Nx/l) =X T - 1;)' (10)
nfp

~ For Nx = 1, lnt%x & —(l—Nx) = —N2, T = Tnfp’ and egn. (10) reduces to

~-AH

2 RT%fp

(11)

=
L]

(T - Tnfp)'

Eqn. (10), the ideal solubility equation, is a special case of eqn. (2c).
Eqn. (11), the thermodynamic expression for freezing point depressions, is an

integrated form of eqn. (2b).



Clapevron's Eauation

If a pure solid dissolves (melts) in its pure liquid,

S .
X(pure solid) <————o0 X{(pure liquid), (12)
b

NX = 1 and, in place of eqn. (9), one has that, at equilibrium, (Af/Ab) = 1-exp(AH/RT).

Taking the natural logarithm of both sides, one obtains in place of eqn. (9a)

A
A £
F in '—""Ab + & constant
= QEE%;EQE . [by (7b)]. (13)

If the pressure and temperature change from values P and T that satisfy egn. (13)
_to new values P + dP and T + dT, for equilibrium to be maintained, dP and dT must

be such that

AE 4 (P + dp) AV = AE + PAV (14)
R(T + 4T) RT

In writing eqn. (14) it has been assumed that, like (Af/Aﬁ), AE and AV are
temperature- and pressure-independent. Simplification of (14) yields, on solving
for the ratio of dP to dT, eqn. (2a), where Q = AE + PAV = AH. A kinetic analysis
of the similar but slightl& more complicated case of the vaporization of a ligquid
(or solid) is given in Appendix 1, together with a kinetic analysis of the effect
on a vapor pressure of squeezing a liquid (the Gibbs~Poynting effect), with an

application to osmosis.



Osmotic Eq.uil ibrium

Consider, next, diffusion of a pure sclvent &t pressure P through a rigid,

gemi-permeable membrane into a solution at pressure P + T,

k

X(pure solvent) RN X(solutrion) (15)
R
Pressure: P P4+
Mole Fraction: N = N< 1
X X

. . i - = = = - s - . T 5
The kinetic analysis Rf kf Rb kbNX yields with Arrhenius's relartion, (6},
expressions identical to (9) and (9a). In this instance, at least approximately,

AE = AV = 0. Thus for (15)

AH = A(PV) = (P + n)VX - PVX = 1V _, (16)
Substitution from (16) into (9a) yields

™
X _ )
sr t lan = ln(Af/Ab), a constant. an

For NX =1, m =0 (at equilibrium). In this instance, therefore,

ln(Af/Ab) = 0. . (18)

Substitution from (18) inro (17) yields for dilute solutions (InN_ = —Nz) the usual

X

thermodynamic expression for a solution's osmotic pressure T:

RTN
T —= s R]‘_‘Cz(moles/lir.er). (19)

v
X



Chemical Equilibrium

By the Principle of iieroszopic Reversibility one has that for the chemical

change
k.
—_—
aA + bB ~¢3q:-— dD + eE (20)

the rate at which A and B disappear by the (perhaps unlikely) mechanism aA + bB,
rate law R = kazCE, is at equilibrium equal to the rate at which A and B appear
: . _ del _ .

by the mechanism dD + eE, rate law R.b = kbCDCE. Thus, from Rf = Rb one obtains the

familiar Law of Mass Action, egn. (21) below, which with eqns. (6) and (7) yields

eqn. (22), from which can be obtained directly eqn. (2¢) (Qirrev = AH).
d_e
5%k ke .
a.b Tk T Ke (21)
cZc ky, 1 |
A"B .
equil,
Af -AH/RT |
= 2;; e {22)
For later reference, we note that, from eqns. (21) and (22),
A ~AH/RT
Keq = Eb- e (232)
- o —lOH - RTIn(Ag /A ) 1/RT (23b)

Boltzmann's Factor

A particularly simple "chemical" éhange is the transition of a molecule X in

a quantum state i, ensrgy Ei, Lo & gquantum state j, enexrgy Ej.

kf ,
> X(state j) A (24)

K

For a further discussion of this point see, Frost, A, A., and Pearson, R. G.,

"Kinetics and Mechanism,” John Wiley and Sons, Ine., 1953,Ch.8; or Frost, A. A.,

J, Chem, Educ.,18,2Q02(1941}).

At

X{state i)




By arguments identical to those given in the preceeding section, one obtains

.ex r ions of the form (21) and (22). 1In this simple instance X = C./C. [C.,.. =
press e (21) (22) P eq J/ i [j(l)

concentration of molecules in state j(i)], AH = NO(Ej - ei) [A(PV) = 0], and

A= Ab' Thus, for a system that is at equilibrium with respect to the change

f
indicated in (24)

—(ej - Ei)/kT
=g (k = R/NO) (25)

o¥40
[N N

From the Boltzmann Factor expression (25) can be obtained directly by summation
partition functions and thence, by differentiation and the taking of logarithms,

the other standard expressions of statistical thermodynamics.

Electrochemical Equilibrium

For the flow of electrons from a potential V., to a potential V2,

1

k
e(potential_vl) —Et s e(potential V

ky

in an electrochemical circuit, cell voltage & = Vo = V;, one has that at equilibrium

), (26)

(2 "balanced circuit"}, Ry = kf =R =1k . Thus, by the Arrhenius relation, (6),

at equilibrium

A (AfH* - A.bH*)/RT @7

—_ = e

A

The activation enthalpies AH* contain, in this instance, two contributions:
one from the enthalpy of activation of the chemical change to which the electron
flow is coupled in an electrochemical cell; the other from the enthalpy of activation

for the physical transfer of electrons across a potential difference £. Thus,



in this instance,

&fH* - AbH* ) ArXH + nfg _ 28
RT - RT (28a)
e
= In—, a constant. (28b)

Ab

At equilibrium the right-hand-side of (28a) is equal to ln(Af/Ab), a constant,
eqn. (28b). If the temperature and voltage change from values T and £ that satisfy
eqns. (28) to new values T + 4T and & + d&, for equilibrium to be maintained, 4T

and df must be such that

ArxH + nf(E + d&) Arxﬁ + nFg

R(T + dT) B RT (29)

In writing eqn. (29) it has been assumed (again) that, like Af/Ab’ ArxH is temperature

independent: Simplification of (29) yields on solving for the ratio of df to dT

A H + nFg
e _rxt 7

Eqn. (30) is, in disguise, eqn. (2d). For consider this universe (or isolated
system): a chemical system O, an atmosphere atm, mechanical surroundings wt, and
thermal surroundings © {for example, as here, a chemical cell g at constant
_temperature (owing to thermal contact with 8) and constant pressure (owing to -
mechanical contact with atm) performing useful work nFE]. Application of the
First Law (the conservation of energy) to the universe O + atm + wt + 0 yields,

on introducing the definitions of P, A H, and Q, the expressions in (31).
X :



AEtotaléAEo + BE,. + AE .+ MBS = O
il 1) i
PAV nFE -Q {31)
SN —
MR, = A B

Thus, for a universe d(a chemical cell) + atm + wt + 6, ArxH + nfF¢ = Q. When the

universe is in internal equilibrium [change (26) reversible], one may write

ArxH * nFErev - Qrev' (32)

Substitution from (32) into (30)yields (Zd).

Carnot's Theorem

The previous results can be generalized. The work obtained from a spontaneous
chemical change need not appear as electrical energy. Replacing nFf in eqn. (28a)

" by W, any useful work, one has for reversible changes that

AH + W AH + W

T2= Tl. (33)
2 1

iIn writing (33) it has been assumed (again) that AH is independent of temperature,
i.e., that

Cp(products) = Cp(reactants). (34)
W2 and Wi represent the work obtained at, respectively, temperatures T2 and T-

Consider now this partial cycle (a cycle for a composite chemical system
Gl + 02, not, however,‘for its thermal and mechanical surroundings): A chemicgl
‘reaction for whiéh.the change in enthalpy is AH advances forward reversibly at
temperature T2 in a system 02 in contact with a thermal reservoir 82 performing

useful work w2 with Qrev = Q2 = AH + w2 (by 32). Next the reaction is run backward
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reversibly at a lower temperature Tl in a systém 94 (except for its temperature,
identical with 02) in contact with a thermal reservoir Gl comsuming useful work

W Finally, with a graded series of external thermal. reservoirs the products

1
in 9, (chemically identical to the reactants in 02) are warmed reversibly from

T1 to T2 and, using the same set of thermal reservoirs, but in the opposite order,
the products in o, (chemically identical to the reactants in Gl) are cooled from
T2 to Tl. By (34), the individual external reservoirs suffer no net change.

The net work obtained from the overall, reversible process (cyelic for o1 + 02)

is W, = Wy. By (33), W, = (T,/T,) (A} + W,) -0H. Thus

- Tl
Wy =W = (W, + AD)(1 - T
M — 2
Q2

Division of both sides by Qz, the energy absorbed from the warmer thermal
reservoir, yields Carnmot's theorem.
T
1
- =1 - = (35)
) T
Our discussion of the kinetic derivation of the extramiral relations of
chemical thermodynamics concludes with (35) and its companion
dwfev Qrev : '
aT = T ' (36)

obtained, after replacing nFf by W, from (30) and (32). All the second-law
based relations of thermodynamics are essentially special instances of (35) or

(36).
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AS and AG
(Clausius~-Gibbs Thermodynamics)

The major iniramural relations of chemical thermodynamics are obtained by intro- .

ducing the abbreviation

Ag

Ab

From the present viewpoint eqn. (37) may be considered a definition of AS.

Use of (37) in (13) yields for the melting-freezing equilibrium

AE - .

Use of (37) in (23b) yields

-(an - TAS®)/RT

= e (39)

Keq
The superscript ®on S in (39) is added to indicate that in this instance the
numerical value of AS calculated from (37) will depend on the units used to express
the concentrations of, for example, A and B, since the latter will determine, in
part, the numerical wvalue aséigned to the kinetic parameter Af in the rate law

- _ % a.b
R.f [Af exp ( AfH /RT]CACB'

Use of (37) in (28a,b) yields (with nF§ = W)

AH + W
rev

T = Ag, . (40a)
Or,

W
rev

It

~(AH — TAS). - (40b)
Taken with (32), (40a) yields (1la), which, with (36) yields

= AS. . (41)
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Together, (4Ca) and (41) yield dhrev/d'r = (AH + wrev) /T or

e
d Kwrev
daT T2 ¢

~This last relation is an extramural relation. The symbols S and/or G do not appear

in it. It can be obtained directly from (36) and (32; with nFErev = wrev)'

Introduction of the abbreviation (lc), a definition of AG, yields with (39)
(and the ideal-solution theory approximation that AH is concentration independent)
eqn. (lb). Use of (lc) in (40b) yields W oy = ~AG. The latter with (41) yields

-(ld) and, with (42), the Gibbs—Helmholté equation:

(1)
AH

"_d-'.'['T— = -5 (43)
T .

Equivalence of the Inter- and Extra-Mural Relations of Thermodynamics

Introduction of the symbols AS and AG with the assigned properties

Q
. _rev - _ e
A5 = — AG AH - TAS 22 AS
(1a) | (1c) (1d)

does not increase the physical content of thermodynamics, namely that -

aw_ Q

_ rev < rev

Q=40+ VW _—dT T
(32) (36)

The First Law 2 The Second Law

For a universe ¢ + 5 + arm + wt.
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‘With definitions (lc} and (la), (32) and (3g) imply (1d):

- _ - - ¢ - ====) 094G _ _
AC AH TAS AH Q oy L. = AS.
(le) (la) (32) (36,1a) (1d)

Conversely, with definitions (lc¢) and (la), (31) and (1d) imply (36). The intermural
and extramural relations of thermodyramics are logically equivalent to each other.

To write (1b)

o

-~ RT InK = AG
eq

is, with (1d) (and le), equivalent, mathematically, to writing the van't Hoff

relation (2¢) in its differential form

d In K
S e | om
dT RT2

The position in the above, hierarchical arrangement of ideas of the expression

AS 0 is described in Appendix 2.

>
total —

Summarv and Conclusions

Equations of classical (and statistical) thermodynamics based on the Second
Law can be divided into two classes: those that contain thé symbols S and/or G
(or A) (the intramural relations) and those that do not (the extramural relations).
The latter relations, those of immediate practical use, can be obtained quickly
and easily, without calculus, from simple kinetic arguments based on Arrhenius's
Rate-Comstant Law and the assumptions of ideal solution theory (AH independent of
concentration; activities of solvenrs equal to mole fractions, those of gases to

partial pressures); the assumption, or approximation, that ACP = 0; and, in some
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instances, the Principle of Microscopic Reversibility. The kinetic treatment is,

thus, a complement ro, not a complete substitute for, the usual thermodynamic

derivations of, for example, Clapeyron's equation and Carnot's theorem, which are

valid relations even for non-ideal systems and for systems for.which ACp ¥ o.
Arrhenius's Law is the non-thermodynamically inclined chemist's friend. While

not encompassing the full content of the Second Law, and probably precisely because

of that fact, Arrhenius's Rate-Constant Law embodies in a form immediately and

easily applicable to many problems (both classical and statistical) those immplications

of the Second Law of particular interest to chemists. One may wonder how Arrhenius

was led to an expreésion_that captures so simply yet effectively the chemically

significant features of the Second Law of thermodynamics.

Origin of Arrhenius's Rate-Constant Law

"In his notablelbook Studies in Chemical Dynamics van't Hoff gives‘a theoret—
ically-based formulation of the influence of temperature on the rate of reaction,”
wfote Arrhenius in 1889 in a paper (hié chief contribution to chemical kinetics)
On - the Reaction Velocity of the Inversion of Cane Sugar By Acids (1),

"It may be proved, by means of thermodynamics," van't Hoff had written (2),

"that the values of kl and kz four kf and‘kb] must satisfy the following equation: -

n
d log kl ) d log k2 ) q 4
d T d T 2" -

[Today we usually write 1n for log, AH for g, R for 2.]
"Although this equation does not directly give the relationship between the

constants k and che temperature,” continued van't Hoff, "it shows cthat this
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relscioaship must be of the form

where A and B are constants" (2).

Implicit in van't Hoff's remarks is the understanding that Al -4, =q (cf.
eqn. 7a) and that Bl = Bz?

"It is, however, easily seen," notes Arrhenius, "that B can be any function,
F(T), of the temperature... [provided only that] the F(T) belonging to two reciprocal
reactions are the same" (1), |

"Since F(T) can be anything at all,” continues Arrhenivs, "it is not possible
to proceed further without introducing a new hypothesis, which is in a certain sense
a paraphrase of the observed facts" [emphasis added],.

Noting that the influence of temperature on specific reaction rates is very
large, much larger than incréasing gas-phase collision frequencies or decreasing
liquid-phase viscicities, Arrhenius suggests by analogy with the "“similar extra-
ordinary large change in specific reaction velocity (k)...brought about by weak
basis and acids" [an effect arising from the catalytic effect of often an
infinitesimal amount of H or OH ] that in, for example, the inversion of cane
‘sugar, the rate of which is sharply temperature dependent, the "actual reacting
substance is not [ordinary] sugar, since its amount does not change with temperature,
but is another hypothetical substance... which we call 'active cane sugar; [today,
Bcrivated cane sugar']...that is generated [in small amounts, by activation] from

[ordinary, inactive] cane sugar...and must [be supposed to] increase rapidly in

quantity with increasing temperature."

3 _ s AT
In absolute rate theory k = ('RT/h)eAS /Re At /RT, Hence, for Acg = 0, dlnk/dT =

o
AM /RT + /T and B = 1/T. More generally, if, empirically, one has k = aTneA/T,

a, A,constants, then, by (45), B = n/T.’



17

Continuing wirh his paraphrase of the observed facrs, Arrhenius writes that
"since the reaction velocity is approximately proportional to the amount
tconcentration] of [ordinary] cane sugar...the amount [concentration] of 'active
can sugar', Ma’ must be taken to be approximately proportional to the amount

of inactive cane sugar, M. The equilibrium condition [emphasis added] is thus:

M = k Mi . (46)

"The form of this equation shows us that a molecule of 'active cane sugar'
is formed from a molecule of inactive cane sugar either by a displacement of

the atoms or by addition of water", whose amount is ;onstant; its concentration,
therefore, does not appear in eqn. (46).

The constant k in (46) wears two hats. It is simultaneously a thermodynamic
parameter and a rate parameter. It is the thermodynamic equilibrium comstant for
the postulated equilibrium between active and inacrive cane sugar molecules (It
would be wricten today as K* or K'*)e And, 1f the rate of inversion is, as
postulated, proportional to Mﬁ, k is proportional to the kinetic rate constant
for the inversion of cane sugar.

Carrying over in this way to kinetics a thermodynamic relation, Afrhenius

- applies van't Hoff's thermcdynamic expression (44) for the temperature variation
of an equilibrium constant K (= kl/kz)'to the thermodynamic-kinetic constant k of
(46). In the spirit of modern absoluce rate theory, he writes that "Thus for the

constant k (or what is the same thing Ma/M;) we have the equation

d lognat K qg ", . (&7

d T 2

which on integration yields, with g = LHY (and 2 = R), eqn. (6).
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That Arrhenius's Rate-Constant Law captures for chemistry the essential
features of the Second Law of thermodynamics is, thus; no mystery, It 1s a
plausible application, based on a selective if brief axiomatization of nearly
universal features of chemical reaction rates, of van't Hoff's thermodynamic
relation (44), which is a special instance-—~THE CHEMICAL INSTANCE--of the Gibbs—
Helmholtz equation (43), which in turn is a general instance, if not quite the
complete embodiment of Carnot's theorem (35, 36), itself THE most general mathe-
matical statement of the Second-Law - like behavior of nature. As we have shown,
however, in many chemical problems Arrhenius's Law (6) is a more quickly and easily
used expression of the Second Law than is Carnot's more widely applicable and,

though mathematically simpler, chemically more remote theorem (35).

Appendix 1

Derivation of Clapeyron's Equation for the Phase Change

k
X(pure liquid) —i X(gas)

%

With a Note on the Gibbs-Poynting Effect and Osmotic Pressure

At equilibrium (Rf = Rb), kf = ka. Using (6) and (7a), one obtains on

taking logarithms.

A
A + lmn P = 1n £ , 4 constant.

RT Ab

Thus, on going from an equilibrium point T,P to another equilibrium point

T + dT, P + dP, one has that if AH is (in this instance) independent of T and P,
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dT must be such that

AH _ AH
R(T4AT) +  In(P + dP) = RT + 1n P.

Multiplying through by R(T + dT)T, simplifying, noting that 1n(P + dP) - ln P =
In{l + %;D = dP/P and that RTZ/P = TV® and dropping the term containing dP x dT,

one obtains

iP—= A_}i.
dT ng
=~ AH

TAV °

If the partial préssure on the gas, Pg, is not the same as the pressure on
the liquid phase, Pl (the liquid, for example, might be squeezed—-as in an osmotic
experiment-—behind a rigid, X-permeable barrier}, the first equation above should
be written

RT
1-1

—
AE + P&V - piy

g .
RT + 1n P 1n

s a4 constant.

o |

For vapors behaving as ideal gases, one has (as indicated) P&V = RT. If, now,

at constant temperature, the two Pressures change from values Pl and P® that

satisfy the above relation to new values Pl + dPl and P + dPg, for equilibrium

to be maintained, dPl and dp® must be such that

8E + RT - (¢! + aph) — In (P8 + ap®) - AE+ RT - plyt
RT RT

+ 1n Pg.

Simplifying, one obtains the Gibbs-Poynting equation

ar® =

I
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Consider, now, a squeeszed, tmpure liquid X in equilibrium with the pure,
unsqueezed liquid, eqn. (15), equilibration occurring (in one's mind) via a common
vapor phase. A finite squeeze APl = T increases the vapof pressure (the pressure of
the gas that maintains equilibrium with the liquid) by an amount (see ébove)
(Vllﬁg)ﬁ. The presence, however, of a second component, 2, decreases the vapor
pressure from that of the pure liquid, P;, by an amount (see eqn. 5b) P§ - P;N =

P§(l -~ NX) = PONZ. Equating those two terms, one finds that the amount T an Zmpure

liquid must be squeezed to maintain equilibrium with the pure liquid is given by

the expression

P> T N RT N
X 2 2
‘ﬂ' = —1 = -—l
v v
(in agreement with egn. 19).
Appendix 2

, AS , and AS

85, 854, AS -

atm total

The primary implications for classical thermodynamics of the Second-Law -
type behavior of nature are embodied in expression (36): dwrev/dT = Qrev/T' The
variation with temperature of Wrev is a property jointly of the initial agnd final

states of a system 0. It 1s, so to speak, a "double state function". Define, in

the spirit with which (36) was introduced,
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dyl
ASO = dr;v For Convenience 4

ey

= 7 By Carnot's Theorem
B revEB

- By Definition: Q = “AEG‘
f.”_‘.H_T + W v

= —= By the First Law

Define, also, purely for bookkeeping purposes,

AE.
Ase = '7.{‘-6'
Asatm =0
Aswt =0
Astotal = ASU + ASe + Asatm + Aswt

‘Clearly, for a reversible process AS 0. For irreversible processes, one

total
has that
= < =
W:L:r:rev AHG * Qirrev wfev AHG' * Qrev
t Carnot ISt Law
lS Law
> Qirrev N Qrev or (Q = -AEB)
ﬂirrevEe g ArevEe
) Airrevse > arevsﬁ
> irrevstotal 0
L

It's easier to write "AS" than "dwrev/dT”.
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Fig. 1. The Arrhenius - van't Hoff relation between che
kinetic paramzacers &f,bﬂ* and the thermodynamic
paramerar AH:

fy = A K - *
A ufH AbH



