Variational Calculations on the Lithium Atom

The electronic structure of lithium is 1s\(^2\)2s\(^1\). The hydrogenic 1s and 2s orbitals are as follows:

\[
\Psi(1s) = \frac{3}{\sqrt{\pi}} \exp\left(-\alpha \cdot r\right) \quad \Psi(2s) = \frac{3}{\sqrt{32\pi}} (2 - \alpha \cdot r) \exp\left(-\frac{-\alpha \cdot r}{2}\right)
\]

If these orbitals are used the variational expression for the lithium atom energy is given below.

Nuclear charge: \(Z := 3 \) \quad Seed value for \(\alpha \): \(\alpha := Z \)

Define variational integral for lithium:

\[
E(\alpha) := \alpha^2 - 2 \cdot Z \cdot \alpha + \frac{5}{8} \cdot \alpha^2 - \frac{Z \cdot \alpha}{4} + \frac{34 \cdot \alpha}{81}
\]

Minimize energy with respect to the variational parameter, \(\alpha \).

Given \(\frac{d}{d\alpha} E(\alpha) = 0 \) \quad \(\alpha := \text{Find}(\alpha) \quad \alpha = 2.5357 \quad E(\alpha) = -7.2333 \)

This one-parameter variational calculation is in error by 3.27%.

\[
E_{\text{exp}} := -5.392 - 75.638 - 122.451 = \frac{72.2114}{27.2114} \quad E_{\text{exp}} = -7.4778 \quad \frac{|E(\alpha) - E_{\text{exp}}|}{E_{\text{exp}}} = 3.2695 \%
\]

It is possible to improve the results by using a two-parameter calculation in which the 2s electron has a different scale factor that the 1s electrons. In other words the electronic structure would be 1s(\(\alpha\))\(^2\)2s(\(\beta\))\(^1\).

\[
\Psi(1s) = \frac{3}{\sqrt{\pi}} \exp\left(-\alpha \cdot r\right) \quad \Psi(2s) = \frac{3}{\sqrt{32\pi}} (2 - \beta \cdot r) \exp\left(-\frac{-\beta \cdot r}{2}\right)
\]

This calculation was first published by E. Bright Wilson (J. Chem. Phys. 1, 210 (1933)) in 1933. Levine's Quantum Chemistry (4th ed. pp 274-5) contains a brief summary of the calculation.

Nuclear charge: \(Z := 3 \) \quad Seed values for \(\alpha \) and \(\beta \): \(\alpha := Z \quad \beta := Z - 1 \)

When the wave function for the 1s(\(\alpha\))\(^2\)2s(\(\beta\)) electron configuration is written as a Slater determinant, the following variational integrals arise.

\[
T_{1s}(\alpha) := \frac{\alpha^2}{2} \quad T_{2s}(\beta) := \frac{\beta^2}{8} \quad V_{N1s}(\alpha) := -Z \cdot \alpha \quad V_{N2s}(\beta) := -\frac{Z \cdot \beta}{4}
\]

\[
V_{1s1s}(\alpha) := \frac{5}{8} \cdot \alpha \quad V_{1s2s}(\alpha,\beta) := \beta \cdot (\beta^4 + 10 \cdot \alpha \cdot \beta^3 + 8 \cdot \alpha^4 + 20 \cdot \alpha^3 \cdot \beta + 12 \cdot \alpha^2 \cdot \beta^2)
\]

\[
(2 \cdot \alpha + \beta)^5
\]
The next step in this calculation is to collect these terms in an expression for the total energy of the lithium atom and then minimize it with respect to the variational parameters, α and β. The results of this minimization procedure are shown below.

$$
E(\alpha, \beta) := \frac{2 \cdot T_1(\alpha) + T_2(\beta) - T_{1s}(\alpha) \cdot S_{1s2s}(\alpha, \beta)^2 - 2 \cdot T_{1s2s}(\alpha, \beta) \cdot S_{1s2s}(\alpha, \beta) \cdots}{1 - S_{1s2s}(\alpha, \beta)^2}
$$

Minimization of $E(\alpha, \beta)$ simultaneously with respect to α and β.

Given

$$
\frac{d}{d\alpha} E(\alpha, \beta) = 0, \quad \frac{d}{d\beta} E(\alpha, \beta) = 0
$$

$$
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix} := \text{Find}(\alpha, \beta) \quad \begin{pmatrix}
\alpha \\
\beta
\end{pmatrix} = \begin{pmatrix}
2.6797 \\
1.8683
\end{pmatrix} \quad E(\alpha, \beta) = -7.3936
$$

Comparison with experiment:

$$
E_{\text{exp}} := -5.392 - 75.638 - 122.451 - 27.2114 \quad E_{\text{exp}} = -7.4778 \quad \left| \frac{E(\alpha, \beta) - E_{\text{exp}}}{E_{\text{exp}}} \right| = 1.1258\%
$$

The two-parameter calculation yields significantly better agreement with the experimental ground state energy.