Numerical Solutions for a Modified Harmonic Potential

Frank Rioux
Department of Chemistry
College of St. Benedict | St. John’s University

This tutorial deals with the following potential function:

\[
V(x, d) = \begin{cases}
\frac{1}{2} k (x - d)^2 & \text{if } x \geq 0 + d \geq 0 \\
\infty & \text{otherwise}
\end{cases}
\]

If \(d = 0 \) we have the harmonic oscillator on the half-line with eigenvalues 1.5, 3.5, 5.5, ... for \(k = \mu = 1 \). For large values of \(d \) we have the full harmonic oscillator problem displaced in the \(x \)-direction by \(d \) with eigenvalues 0.5, 1.5, 2.5, ... for \(k = \mu = 1 \). For small to intermediate values of \(d \) the potential can be used to model the interaction of an atom or molecule with a surface.

Integration limit: \(x_{\text{max}} := 10 \)
Effective mass: \(\mu := 1 \)
Force constant: \(k := 1 \)
Potential energy minimum: \(d := 5 \)

Potential energy: \(V(x, d) := \frac{k}{2} (x - d)^2 \)

Integration algorithm:
Given \(-\frac{1}{2\mu} \frac{d^2}{dx^2} \psi(x) + V(x, d) \psi(x) = E \psi(x) \)
\(\psi(0) = 0 \)
\(\psi'(0) = 0.1 \)

\(\psi := \text{Odesolve}(x, x_{\text{max}}) \)
Normalize wavefunction: \(\psi(x) := \frac{\psi(x)}{\sqrt{\int_0^{x_{\text{max}}} \psi(x)^2 \, dx}} \)

Energy guess: \(E = 0.5 \)

Calculate average position:

\[
X_{\text{avg}} := \int_0^{x_{\text{max}}} \psi(x) \cdot x \cdot \psi(x) \, dx \quad X_{\text{avg}} = 5
\]

Calculate potential and kinetic energy:

\[
V_{\text{avg}} := \int_0^{x_{\text{max}}} \psi(x) \cdot V(x, d) \cdot \psi(x) \, dx \quad V_{\text{avg}} = 0.25
\]

\[
T_{\text{avg}} := E - V_{\text{avg}} \quad T_{\text{avg}} = 0.25
\]
Exercises:

- For $d = 0$, $k = \mu = 1$ confirm that the first three energy eigenvalues are 1.5, 3.5 and 5.5 E_h. Start with $x_{\text{max}} = 5$, but be prepared to adjust to larger values if necessary. x_{max} is effectively infinity.
- For $d = 5$, $k = \mu = 1$ confirm that the first three energy eigenvalues are 0.5, 1.5 and 2.5 E_h. Start with $x_{\text{max}} = 10$, but be prepared to adjust to larger values if necessary.
- Determine and compare the virial theorem for the exercises above.
- Calculate the probability that tunneling is occurring for the ground state for the first two exercises. (Answers: 0.112, 0.157)