The purpose of this tutorial is to analyze the Stern-Gerlach experiment using matrix mechanics. The figure below is taken (and modified) from Thomas Engel's text, *Quantum Chemistry and Spectroscopy*.

Silver atoms are deflected by an inhomogeneous magnetic field because of the two-valued magnetic moment associated with their unpaired 5s electron ([Kr]5s\(^1\)4d\(^{10}\)). The beam of silver atoms entering the Stern-Gerlach magnet oriented in the z-direction (SGZ) on the left is unpolarized. This means it is a mixture of Ag atoms with random spin orientations. As such, it is impossible to write a quantum mechanical wavefunction for this initial state. Consequently, equation 6.2 in our text is not a valid representation of the initial state of a silver atom.

This situation is exactly analogous to the three-polarizer demonstration described in a previous tutorial (http://www.users.csbsju.edu/~frioux/q-intro/polar-append.pdf). Light emerging from an incandescent light bulb is unpolarized, a mixture of all possible polarization angles, so we can't write a wave function for it. The first Stern-Gerlach magnet plays the same role as the first polarizer, it forces the Ag atoms into one of measurement eigenstates - spin-up or spin-down in the z-direction. The only difference is that in the three-polarizer demonstration only one state was created - vertical polarization. Both demonstrations illustrate an important quantum mechanical postulate - the only values that are observed in a measurement are the eigenvalues of the measurement operator.

To continue with the analysis of the Stern-Gerlach demonstration we need vectors to represent the various spin states of the Ag atoms. We will restrict our attention to the x- and z- spin directions, although the spin states for the y-direction are also available.

Spin Eigenfunctions

Spin-up in the z-direction: \(\alpha_z := \begin{pmatrix} 1 \\ 0 \end{pmatrix} \)
Spin-down in the z-direction: \(\beta_z := \begin{pmatrix} 0 \\ 1 \end{pmatrix} \)

Spin-up in the x-direction: \(\alpha_x := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \)
Spin-down in the x-direction: \(\beta_x := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \)

After the initial SGZ magnet, the spin-up beam \((\alpha_z) \) enters a magnet oriented in the x-direction, SGX. The \(\alpha_z \) beam splits into \(\alpha_x \) and \(\beta_x \) beams of equal intensity, because \(\alpha_z \) is a superposition of the x-direction spin eigenstates as shown below.

\[
\alpha_z = \frac{1}{\sqrt{2}} (\alpha_x + \beta_x)
\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \left[\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right]
\]
Next the α_x beam is directed toward a second SGZ magnet and splits into two equal α_z and β_z beams, because α_x is a superposition of the α_z and β_z spin states.

$$\alpha_x = \frac{1}{\sqrt{2}} (\alpha_z + \beta_z) \quad \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \left[\begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]$$

In this approach we have analyzed the inputs to the Stern-Gerlach magnets. In the operator approach that follows we analyze the outputs of the SG magnets.

Operator Approach

We can also use operators (matrices) to analyze this experiment. The matrix operators associated with the two Stern-Gerlach magnets are shown below.

SGZ operator:

$$\text{SGZ} := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

SGX operator:

$$\text{SGX} := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

The SGX magnet operates on the α_z state, changing it to β_z which is a superposition of α_x and β_x. The minus sign appears in the superposition because the eigenvalue of β_x is -1.

$$\text{SGX} \cdot \alpha_z = \beta_z = \frac{1}{\sqrt{2}} (\alpha_x - \beta_x)$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \left[\begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right]$$

The final SGZ magnet operates on the α_x state, changing it to β_x which is a superposition of α_z and β_z. The minus sign appears in the superposition because the eigenvalue of β_z is -1.

$$\text{SGZ} \cdot \alpha_x = \beta_x = \frac{1}{\sqrt{2}} (\alpha_z - \beta_z)$$

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \left[\begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]$$

From a classical perspective, after the SGX magnet it might be assumed that the Ag atoms are in the spin state $|\alpha_z\rangle |\alpha_x\rangle$, in other words after the SGZ and SGX magnets the Ag 5s electrons have well-defined values for spin in both the z- and x-directions. However, the SGZ and SGX operators do not commute, meaning that they cannot have simultaneous eigenstates.

$$\text{SGX} \cdot \text{SGZ} - \text{SGZ} \cdot \text{SGX} = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$$

The spin state entering the second SGZ magnet is simply α_x, an eigenstate of the SGX operator, not simultaneously an eigenstate of SGZ and SGX.