
Web Application Security:
Input Validation

David J. Bernardy

Computer Science Department

Saint John's University

Collegeville, MN

djbernardy@gmail.com

Abstract— Web applications have become a vital aspect of our

everyday lives and the security of information they access is of an

upmost importance. There will always be people who aim to

exploit these applications and their users for reasons such as

curiosity, destructive intentions, or financial profit. A common

flaw of the average web developer is the enforcing of weak input

validation, or forgetting it all together. By simply submitting

malicious strings to web applications that alter the intended use,

hackers can gain access to sensitive information in databases and

run scripts on your machine that they embedded in web sites. To

demonstrate this, I have created two web applications which

perform the same functions but one of which is insecure and

vulnerable to basic SQL injections and XSS attacks while the

other is not. If web developers take the basic precautions I have

laid out, they will drastically decrease their web application

security vulnerabilities. My research brings the awareness of web

applications exploitations to the typical web programmer so they

can prevent these common attacks and be proactive in staying

up-to-date with emerging threats and newly discovered attacks.

I. INTRODUCTION

As the Internet has evolved to meet the needs of our

fast pace world, security must adapt at the same pace to

protect sensitive data. Web applications have made the world

more efficient by allowing people to access information and

complete transactions from just about anywhere, at just about

any time. As more security critical applications, such as

banking systems, governmental transaction interfaces, and e-

commerce platforms are becoming directly accessible via the

Internet, security has become incredibly important. These web

applications can be accessed by millions of anonymous

Internet users which poses a very large security threat [17].

The root cause of SQL injections and XSS attacks is weak

input validation or lack thereof. Input must always be

considered untrustworthy and web developers must make

security their top priority and continue to remain up-to-date

with the latest security practices. An important step in

securing web applications of tomorrow is to raise awareness

and provide tools to web site administrators and web

developers today, so they can proactively audit the security of

their applications. Whenever an application needs to gather

information from a user or a browser, that information must be

validated carefully to remove potential malicious strings.

Likewise, data sent back from the web server to a browser

should be filtered to make sure that exploits that an attacker

has managed to sneak onto a web server aren‟t served back to

unaware consumers who visit the site. As the popularity of the

web increases and web applications become tools of ever day

use, the role of web security has become of utmost

importance. Recent years have shown a significant increase in

the number of web application attacks; we must be prepared

for these attacks and stay one step ahead of those who have

harmful intentions.

II. BACKGROUND

A. Web Application History

The Internet as we know it has changed significantly

since its conception. In its early years, it consisted of static,

unchanging web pages. These pages were read-only,

informational portals that provided content on things such as

businesses, locations, and individuals. Scrolling down a web

site page to view more content was the only user interaction.

Much like banks would have no use for security guards and

cameras if they closed their doors to the public, security had

no place in a cyber world that did not require people to

communicate with web sites. As the world changed, so did

users' needs, thus, a new era was born: the age of dynamically

changing web pages that interact with users in various ways.

“The World Wide Web is capable of delivering a broad range

of sophisticated applications [13].”

Application development soon made the shift to the

World Wide Web with web applications. Previously,

applications needed to be separately installed on individual

computers and could only be accessed on those machines.

Each time an application was updated, it needed to be

redistributed to all its clients, potentially costing an

organization significant time, money, and productivity. A web

application is a software application that is accessed through a

web browser over the Internet or through an organization‟s

Intranet. They became popular because they are easy to

update and maintain without distributing and installing

software on potentially thousands of client computers. Web

applications typically follow a client-server architecture. The

client side is the web page that is displayed in front of a user

and the server is where the application is hosted. The client

<form name="login" action="login.php"
method="get">
 <label>Username:</label>
 <input name="u_name"/>

 <input value ="Login"
 type="submit"/>
</form>

/login.php?u_name=johnnies10

interacts with the server to perform various functions. A

modern day example is WellsFargo.com. The client portion

would be is the web page that you see when you open the

browser. You must first log into the web application to

confirm you are a valid user and then Wells Fargo knows

which account information to display. After you‟ve entered

your information and hit submit, the data travels from the

client-side to the server-side where Wells Fargo receives and

processes it. When the data arrives at Wells Fargo, it is

processed and formed into database queries. If you exist in

their systems, these queries will return your information to the

client-side where you can now check your account balances,

transfer money, or pay bills.

Another benefit to web applications is that since they

do not need to be install, they don‟t require the use of any disk

space which means clients do not need to purchase larger hard

drives and can access operate numerous applications. Another

important aspect web applications is they are cross-platform

compatible. This means they are accessible from various web

browsers within different operating systems such as Windows,

Linux, and Mac OS. Since operating systems vary greatly, to

develop software that can be utilized by everyone (regardless

of their platform) would require a large amount of financial

commitment as well as capable programmers from each

operating system. Web applications are simple solutions to

the problem of availability to multiple operating systems.

B. Web Application Downsides

Although the ability of web applications to be used

by a large number of clients seems like a good thing, there are

downsides. Many users may use the applications in nearly

anonymous ways [19]. This is where web application security

becomes an important topic. “Today, data represents a

valuable asset for companies and organizations and must be

protected. At times, this data can be worth millions of dollars

and organizations take great care at controlling access to it,

with respect to both internal users within organization, and

external users, outside the organization [18].” Web

applications have made the world around us run quicker and

more efficiently. They make it possible to bank online, access

email from most computers, and shop with ease. It wasn‟t

long before hackers began taking advantage of these new

luxuries for fun and profit. As web applications become more

and more important in our everyday lives, better security has

become a pressing need. We live in a world where web sites

have user-generated content like blogs and social network site

as well as personal information such as bank account

information and credit card numbers. Therefore companies

and organizations needed to build up their defenses and

protect their clients‟ as well as their own assets. “The world

has witnessed a rapid increase in the number of attacks on web

applications” [13] and there is not one cure-all that solves all

security problems.

C. Cyberspace and the Law

 Laws are in place that govern cyberspace just like

they do in the physical world we live in. The computer Fraud

and Abuse Act (1986), among others, protects users from

credit card abuse, stolen property, and trespassing [6].

Althought these laws are in effect, just like in the real world,

they are often broken which is why securing web applications

is so vital. Validating and filtering input is not a guaranteed

way to secure a system much like locking a house door.

People often lock their doors when they leave their houses.

This is a very simple and easy way to protect their house from

a stranger walking in and stealing or damaging their property.

The same principle applies to input validation; it is fairly easy

to do and will protect against most users with malicious intent.

On the other hand, there are users out there who possess the

skills and resources to bypass input validation much like there

are burglars who have the experience and resources to gain

entry into your house. If we do not protect the access of our

web applications, people with very limited hacking experience

can easily walk right into our systems.

D. Client-Server Model

Multitier architecture refers to a client-server

architecture that separates the user interaction, the application

processing, and the data management into logically separate

processes. It provides a model for developers to create

flexible and reusable applications. By breaking up an

application into tiers, developers only have to modify or add a

specific layer, rather than have to rewrite the entire application

over. There are typically three layers:

 Presentation tier

 Business logic tier

 Data tier

1) HTML – Passing parameters

 A typical way of exchanging information between

web pages is thoroughly the submission of forms. Input is

sent from one page's form to another page by one of two ways.

The method attribute of a form tag can be either POST or GET

as denoted below:

Figure 1. Example of a from using the GET method to send information

Information past by the GET method shows up in the URL of

a web site.

Figure 2. Example of the adress bar from a GET request

<form name="login" action="login.php"
method="post">
 <label>Username:</label>
 <input name="u_name"/>

 <input value ="Login"type="submit"/>
</form>

<?php
 $counter = "Hello World";
 echo $counter;
?>

$username = $_POST['u_name'];

SELECT title
FROM Books
WHERE price > 20.00

The name of the input item is displayed along with the input

which allows these pages to be bookmarked. Imagine a user

searching Google Maps for the location of all the restaurants

in the area. Instead of typing in this search each day want to

try out a new place, you can simply select the bookmarked

search. Because input is displayed, it is a good idea to avoid

this method when sending sensitive information to a page,

such as a login password. Sending private information can be

easily accomplished using the POST method as seen below:

Figure 3. Example of a from using the POST method to send information

2) Server-Side Scripting Language

 PHP: Hypertext Preprocessor (PHP) is a server-side

scripting language which was first released in 1995 and has

been under continuous development ever since [20]. PHP is a

free, open source language for producing dynamic web pages.

PHP code is embedded into the HTML source document and it

is compiled on the server and then sent back to the user as

plain HTML text. It is similar to other server-side scripting

languages that provide dynamic content from a web server to a

client such as Microsoft's Active Server Pages (ASP), Sun

Microsystems' JavaServer Pages (JSP). As of April 2007,

over 20 million Internet domains had web services hosted on

servers with PHP installed. Facebook is an example of a large

company that utilizes PHP's functionalities. PHP variables do

not need to be declared. As soon as a variable is given a

value, it is automatically assigned a type.

Figure 4. Example of casting a variable as a String

As you can see above, $txt is assigned the characters "Hello

World!" and therefore casted as a String and therefore has all

the functionalities of a String object (i.e. strLen(), trim() , or

strtolower()). In the following example, the variable $counter

is assigned the value 5 and is therefore casted as an integer. It

now is possible to perform mathematical functions such as

addition, subtraction, multiplication, etc.

Figure 5. Example of casting a variable as an integer

PHP provides web developers with predefined functions that

assist with input validation, database calls, and, with the most

recent release, classes to allow for object orientated

programming (OOP). In PHP, To access user input passed

from a HTML form, the GET or POST global array must but

called using item ID keys to reference specific variables. For

example if a form is submitted and a user inputs a username in

an input box that is labeled „u_name‟, in PHP you would

simply assign that item to a variable like below:

Figure 6. Example of assigning the username submitted by an html form (via

the POST method) to a variable in PHP

Now the variable $username will contain a user‟s username

and can be used in a wide variety of ways such as dynamic

welcome messages or database queries.

3) Structured Query Language (SQL)

 SQL is a language designed for managing data in a

relational database management system. It allows a user to

retrieve information, delete records, insert records, and update

records in a database. A hacker can use knowledge of how

SQL is structured and how this query will be inserted into a

dynamically formed query on a server to alter it's intended use

(which will be discussed in further detail in the next section).

Below is an example of a simple query:

Figure 7. Example of a SQL query to retrieve the title of all books in the

table that are more than $20

III. VULNERBILITIES

A. HTML Injections

There are two major web application security risks

that exist today, SQL injections and cross-site scripting (XSS).

Both depend on web sites‟ failure to validate input being

passed from a client to a server. Each of these attacks will be

discussed in further detail below but the key point is that web

developers must be skeptical of all input. The problem is

application security is frequently overlooked. Unlike the legal

system which states that everyone is innocent until proven

guilty; all input should be considered malicious until proven

trustworthy. Therefore all data should be sanitized and

validated at the client level before it is sent to the server. Once

the server receives the data it should be checked over once

again to ensure that the proper parameters are being sent to

databases. Web applications typically have rapid development

cycles by developers who don‟t have much experience in

secure application development. “There are currently many

poor coding practices that render web applications vulnerable

to attacks such as SQL injection and cross-site scripting [13].”

They need to identify all data entry points (HTML forms) and

thoroughly validate each and everyone. As tools become more

sophisticated and as corporate networks and applications are

more interconnected and open, security must be built inside

the application‟s code, using secure programming practices. If

not, hackers can do things such as access other people's web

$queryString = "SELECT * FROM client
WHERE u_name=".$_POST["u_name"]. "'AND
p_word='".$_POST["p_word"]."'";

$queryString = "SELECT * FROM client
WHERE u_name='a' OR '1'='1' AND
p_word='a' OR '1'='1'";

http://www.footlocker.com/items?id=10
UNION SELECT TOP 1 TABLE_NAME FROM
INFORMATION_SCHEMA.TABLES--

/items?id=10 UNION SELECT TOP 1
TABLE_NAME FROM
INFORMATION_SCHEMA.TABLES WHERE
TABLE_NAME LIKE '%25login%25'--

accounts and send emails on that user's behalf, acquire the list

of contacts, and automatically BCC themselves on all

outgoing emails; access banking or financial systems and

transfer funds, apply for credit cards, or purchase checks; or

purchase products on eCommerse sites.

1) SQL Injections

 SQL injection attacks are based on web

applications taking malicious strings read from clients and

sending them into dynamically constructed database queries

that alter the intended use. These database queries are

statements that are aimed at retrieving data and manipulating

records in databases. If the data is not properly processed

prior to SQL query construction, malicious patterns can be

injected that result in the execution of SQL or system

commands. Apart from data retrieval and updates, SQL

statements can also modify the structure of databases or delete

them all together. It is important that client-side and server-

side programs execute validation procedures prior to

performing database access [13]. Developers need to consider

all input malicious and sanitize it properly before using it to

construct dynamically generated SQL queries [17].

SQL injection attacks have been responsible for

stealing credit card numbers, usernames, passwords, and much

more. In December 2009, an attacker breached a RockYou!

plaintext database containing the unencrypted usernames and

passwords of about 32 million users by using a SQL injection

attack. He hacked the web site not for malevolent purposes,

but to prove a point that most servers are susceptible to SQL

injection attacks and furthermore their databases are poorly

constructed and protected.

 The string in the input box below alters the intended

query's meaning.

Figure 8. Example of a SQL Injection

The query was previously intended to place a username and

password into a query and send it off to the server for

processing.

Figure 9. The input from Figure 7 placed into a dynamic

database query call

If we expand the variables to display the query that is actually

being sent it looks as follows

Figure 10. The query String from Figure 8 expaned

Due to the order of operations in SQL, this query will always

evaluate to be true. When the database returns true to the web

server, it grants the user improper access to the website.

Developers need to consider all input malicious and sanitize it

properly before using it to construct dynamically generated

SQL queries [17]. "Depending on the web application, and

how it processes the attacker-supplied data prior to building a

SQL statement, a successful SQL injection attack can have

far-reaching implications. The possible security ramifications

range from authentication bypass to information disclosure to

enabling the distribution of malicious code to application users

[26]." Global variables can be utilized to discover information

about databases. In the example below, the

INFORMATION_SCHEMA.TABLES contains information

on all tables in the database.

Figure 11. Example of a more sophisticated SQL Injection to obtain the name

of the first table in footlocker's database

We can get more specific and search for specific tables using

the LIKE clause as in the Figure below.

Figure 12. Example of a more sophisticated SQL Injection to obtain the exact

name of the table that holds login information at footlocker

This example identifies the name of the table that holds login

information. A user could then use this table name along with

column names to identify specific users and their information.

The effects of a successful SQL injection attack vary based on

how the targeted application is implemented. SQL injections

can be used for various reasons: to bypass application login,

indirectly or directly obtain sensitive information, delete or

alter contents, and even run commands against the database‟s

host server.

B. XSS Attacks

Every day we interact with a large number of custom-

built web applications. Many web sites publish content

supplied by users in their communities. If this republished

content contains scripts, visitors to the site can be exposed to

XSS attacks. The standard defense is for the web sites to filter

or transform any content that does not originate from the site

itself, to remove scripts and other potentially harmful elements

[15].

XSS attacks are essentially caused by web application

failing to check up on user input before returning it to the

client‟s web browser. Without an adequate validation, user

input may include malicious code that may be sent to other

<script>alert("I stole your
cookies");</script>

<script>alert(document.cookie);</script>

clients and unexpectedly executed by their browsers, thus

causing a security attack. “Ever since its conception, the

World Wide Web has evolved towards an increasingly feature-

rich, interactive and heterogeneous medium. Unlike early

websites which were merely meant to deliver text in practical

fashion, nowadays‟ Web 2.0 sites are not only capable of

hosting rich content, such as images, videos, and audio

material, but also provide platforms for users to contribute

such data and share it with the rest of the world. Due to an

increasing number of web sites offering features to contribute

rich content, and the frequent failure of web developers to

properly sanitize user input, cross-site scripting prevails as the

most significant security threat to web applications.”

(Wurzinger p.33) They are by far the most common

vulnerability found in web applications, identified in over 80%

of all websites.” Not even corporate giants like Google can

completely escape these attacks. XSS enables the access and

theft of web browser cookies, session IDs, and other sensitive

information that the web site has access to which can then be

reused to hijack online user accounts. (Whitehat Security)

Clients are unknowingly attacked by visiting a web

page embedded with malicious JavaScript code. A hacker

simply submits code to an area of a website that is likely to be

visited by other users. These areas are often found on popular

websites with community-driven features such as social

networks, blogs, user reviews, message boards, chat rooms,

web mail, wikis and numerous other locations. Once a user

visits the infected web page, execution is automatic and the

user has no means of defending himself. Therefore it is up to

the server to filter out all potentially harmful data it displays to

clients. (Whitehat Security)

 XSS enables the access and theft of web browser

cookies, session IDs, and other sensitive information that the

web site has access to which can then be reused to hijack

online user accounts. An example of an XSS attack would be

posting the following script on a public bulletin board:

Figure 13. Example of a XSS attack that displays a popup

 This code, if not properly validated and character

escaped, will be submitted to a server database and stored.

Every time a new user views this community posting service,

this entry will be displayed. The problem with this is that the

post actually runs as JavaScript on an unsuspecting user‟s

browsers. The example is innocent because it merely prompts

all users viewing the page with a popup that says “I stole your

cookies” This harmless JavaScript command can easily be

replaced with code that actually does send a user‟s cookie

information directly to them.

Figure 14. Example of a XSS attack to display a user's cookie

information that could contain a username and password

If the attacker doesn‟t have enough real estate to pull off a

lengthy attack, they could simply use JavaScript to redirect

you to their malicious page. Once you open this page, all the

attacker‟s scripts can be run on your machine. Since we want

websites to be very rich in content (bolded, italicized, display

pictures/movies, etc), it is very difficult to filter out all the

malicious input and still maintain the look and appeal of input

from honest users. An example of this difficulty is you can

hide html tags inside of html tags and when you 0use PHP‟s

built in function strip_tags(), you will only capture the outside

most tags and miss the embedded ones.

C. Historic Worms

XSS attacks have been well-known in the Internet

community for several years. Samy is an XSS worm

developed to spread across the social media site MySpace.

The worm carried a script that would display the string "but

most of all, Samy is my hero" on a victim's profile. When a

user viewed that profile, they would have the script planted on

their page. It was released on October 4
th

, 2005 and within 20

hours over one million users had run the script, making Samy

one of the fastest spreading viruses of all time. The Yamanner

worm is another example that was released on June 12
th

, 2006.

Written in JavaScript, it targeted a vulnerability in the Yahoo!

Mail service and spread through the Yahoo system, infecting

the systems of those who opened the e-mails and sending the

user's address book to a remote server. XSS attacks are simple

to execute, but difficult to prevent and can cause catastrophic

damage. Since the victim‟s browser receives malicious

JavaScript code from a trusted web server, it trusts it and

immediately executes. The key to stopping these entirely

preventable attacks lie with software developers and

information security professionals working with web

applications.

IV. INITIAL DEFENSE

When the number of XSS attacks began to grow, the

first suggestions to users were to have them disable scripting

languages in their browsers and avoid unrestricted browsing

on untrustworthy websites. Yet, we live in a world that has

become reliant on scripting languages that enhance web sites,

these solutions reduce the functionality that is executable by

the client side of the application. This is unacceptable. The

problem should be addressed by web developers who need to

check on the input received from a client, and encode or filter

the output returned to the user. The server is responsible for

receiving the input data and outputting it, not the user.

Programmers could simply filter out all the tags that are

submitted, but, again, this reduces functionality. A string

submitted by a user to a message board such as Hello

World is actually displayed as Hello World (in bold). If

a web site removes these tags, the words „Hello World‟ would

not appear in bolded text. Web sites leaning towards rich

content must be careful because malicious JavaScripts can be

easily embedded.

strip_tags($comment);

htmlspecialchars($comment);

V. INPUT VALIDATION

Developers either completely leave out input-output

validation or they implement it very poorly so that it does not

filter out a truly complete set of potential attack characters.

There are many facets to validation. First, validation should

be carefully developed and rigorously tested by other

professionals. Do not define all possible bad characters in a

String; instead accept only the good ones (deny all characters

except for certain allowable characters). Limit the number of

characters accepted, that way you limit the length of a string

that the attacker has to execute an attack. You can‟t solely

rely on security checks at the client-side; attackers may be able

to bypass client side validation. This means there must be

validation on the server-side acting as a backup. Always have

other developers conduct a code review to see if any security

issues can be discovered. With good filtering in place, most

security concerns are mitigated. Attackers will hunt for

weaknesses and exploit them, so cover all of your bases.

(SANS article)

There are many ways of validating input. The

important things to check for are input length, object type, and

if the input follows a desired pattern. Input length deals with

the maximum and minimum characters a user has inputted. If

the strlen() of a string is not within that range, the application

should not proceed and may choose to return an error to the

user. For example if we ask for a user‟s first name, the

application should only accept strings of length 2 to 20. For

the object type, input may be a string of characters, numbers,

Boolean value, etc. For our first name example, the only thing

the application should accept is a string of alphabetical

characters. Patterns are useful in ensuring users enter

acceptable strings. For our example, users should only be able

to input strings in which the first letter is uppercase and the

rest are lower case.

These should first be checked on the client side with

a scripting language, such as JavaScript, so a request is never

even sent to the server if the input does not match our business

logic requirements. Browser validation is faster and reduces

the server load. After a client‟s browser deems input valid, it

is sent off to the server where it should then be checked again.

This is important because it is very easy to bypass client-side

validation. All a user must do is go into their web browser‟s

preferences and select the option that doesn‟t allow web sites

to run scripts on their browsers. Another option is to create a

new HTML page that sends a web server the correctly labeled

input values, thus eliminating client side script validation and

allowing them to enter any input they want.

The second line of defense occurs on the server-side.

You should especially consider server validation if the user

input will be inserted into a database. Validation that occurs

on the server is very similar to validation that is executed on

the client‟s browser. Again we‟re checking string length, type,

and pattern. In addition, validation at the business logic layer

can also incorporate organizations specific functionalities. For

example, company X may not allow you to change your

profile on the 1
st
 day of each month.

Below are some PHP functions to validate input and

sanitize it [5][21][22][23]:

Figure 15. Checks to make sure an HTML input box has been

filled out

Figure 16. Checks the length of a String. Use to make sure input

is in the correct size range

Figure 17. Check if user input is a String

Figure 18. A PHP function to check if user input is made up of

numbers and letters (not symbols

Figure 19. A PHP function to remove all html tags (i.e. bold

, italics <i>, JavaScript <script>

Figure 20. A PHP function to turn HTML special characters like

> and < into their HTML entitites > and <.

The difficult part about preventing against XSS attacks is that

you cannot simply remove all <script></script> tags and be

safe. XSS attacks can come in a multitude of attack vectors:
 <div style=“url(„javascript:alert(Hello

World)‟)”></div>

 <script src=http://ha.ckers.org/xss.js></script>



 <script>window.open(„http://www.evil.site.com‟,

„width=400, height=300‟);<script>

User input can also nest their script tags <scri<script>pt> so if

you do not recursively call the validations, the inner <script>

tag will remain intact.

VI. FUTURE TRENDS

We would always be behind in security if we only

dealt with the present and disregarded the future. Looking

back over the years, the initial attacks on software were buffer

overflow attacks. These were carried out by users entering

isset($_POST['u_name']);

isString($_POST['u_name'];

strLength($_POST['u_name'];

ctype_alnum($_POST['u_name'];

data the program was not designed to handle. This data was

stored in a buffer outside of the memory that the programmer

set aside. If the input was too large for the allocated memory,

it overwrote adjacent memory which often contains other data

causing things like security breaches, memory access errors,

incorrect results, or even complete program crashes.

Programming languages began building in measures to protect

against accessing or overwriting data in any part of memory.

Buffer overflow issues still exist today, but have since been

diminished. SQL Injections became the next big exploitation

to gain recognition. SQL Injections are user inputs that

maliciously alter database queries and change their intended

meanings. To combat these attacks, programmers began

enforcing strict input validation such as checking input

lengths, data types, and patterns on the client and server. Ever

since SQL Injection attacks have become commonly

prevented, Cross Site Scripting (XSS) as emerged as the new

threat. XSS attacks force a web site to display malicious code,

which then executes in an unsuspecting user's web browser. It

executes on the client's browser, not on the server. Users

access trusted web sites only to fall victim to code a third party

has injected into it via ads, message boards, wikis, user

reviews, etc. The effects of XSS attacks are vast; they can

hijack accounts, record keystrokes, steal histories, load trojans,

and much more. The point is that as the computing world

evolves, so must security.

This document is merely an introduction to web

application security. Input validation will continue to move

towards standardization of functions that will encompass

proven methods of validation. This will allow users to simply

call a function and pass it the appropriate parameters versus

writing their own validation for each form. This will

drastically cut down on the number of mistakes programmers

make. Input validation is just the icing on the cake! Security

goes much deeper than that and there is much more to

consider if we want to secure our information. We are

currently unaware of the methods hackers will employ in the

internet‟s third decade but there are plenty of preventative

measures our society can take to give us a fighting chance in

securing information such as credit card numbers, social

security numbers, bank accounts, etc. First, security must be a

primary concern from the initial development of web

applications. This means security cannot simply be tacked on

at the end right before an application is shipped off. While

creating web applications, developers must work in teams and

thoroughly review each other's code. Not only does your own

code need to be reviewed, you must also code review all the

content you are displaying from 3rd parties. It is impossible to

declare a system completely secure, especially when we still

what it to be usable. A balance must be obtained between

security and usability. Web applications must adapt a type of

firewall that prevents brute force attacks from repeatedly

searching a system until a vulnerability is found.

Security from the Beginning
Security must be considered and implemented into

web applications from the beginning of their development. To

demonstrate this, imagine you are baking a cake. To stand a

chance at creating a delicious cake, you must add all the

ingredients before putting it into the oven. It would be

impossible to add the flour to the cake after it has been baked.

Now consider web application development. If security is

added at the very end of the process, it will not be as secure as

a web application that chose to make security a priority from

the beginning. "Security must be baked into the cake, not

added afterwards [7]." How can this be accomplished? The

answer is early education. Not only does security need to be

implemented in many computer science courses, but courses

must exist to take in-depth plunges into the world of security.

Validating input is not something only people with multiple

PhDs can perform. It does not take 10 years of experience; it

is very simple to code and takes organization, meticulousness,

early implementation, and professional code review.

Companies should hold workshops or send their employees to

security classes where they will learn the latest attacks and

preventative measures. Security is imperative to an

organization's success and it should be one of their top ethical

concerns.

Code Review

It is very difficult to secure every aspect of a web

application without help. The code you write must be

thoroughly looked over by a professional. Coding a secure

system is not like a solid block of American cheese, it is more

like Swiss cheese. No matter how thorough you are there will

always be holes that hackers may potentially be able to use to

access your systems. Forgetting to validate even one input

field could leave your entire system vulnerable which is why it

is so important to team up with other programmers to limit the

number and size of these holes. Even when you diminish the

number of wholes in your system, if you directly display

content from a 3
rd

 party, you have opened up a huge

vulnerability to your security. Since so many sites are now

displaying catchy flash animation ads on their websites, it is

more important than ever to review all code being displayed

on your website. An ad designer could easily place dangerous

code inside a flash animation that redirects you to a site of

their choosing which can contain even more XSS attacks.

You may have no intention of misleading users, but if you do

not check the content your reputable site displays, you have a

strong chance of harming others. Be smart. Use the resources

around you and check all content being displayed on your web

site whether it is your own, or someone else‟s.

Usability vs. Security
It is very important to find the proper equilibrium

between usability and security. This presents many problems.

Consider the White House in Washington D.C. If gaining

access to the oval office required someone to merely enter a

one letter (a-z) password, White House staff would be happy.

All employees, including the president of the United States of

America, could easily enter the office within seconds, no

problems right? But what if a terrorist walked in and entered a

random letter? At worst case, a brute force attack of entering

every letter (a-z) would take 26 tries. Now there is a problem.

On the other end of the spectrum, a new security system has

been implemented and gaining access to the oval office now

requires a two hour process including five passwords that

change daily, DNA tests, neurological monitoring, retinal

scans, logical reasoning tests, full background checks, and

more. Productivity would see a huge decrease due to the two

hours a day people could not work. Employees would become

annoyed having to be tested for two hours, every day, to

confirm who they are. What is worse is people start fighting

the system when they are unhappy. Now the president

become tired of going through this completely unnecessary

security check and he leaves a window open in a back room so

he can bypass the security checkpoints every morning. If just

one person walks by this open window during the night,

climbs in, and shoots the president in the morning, all the time

and money put into the security system would be for nothing

and America will suffer a second rate Joe Biden presidency.

As you can see there is a drastic difference in security

approaches. A good security system should be invisible and

balance usability and security.

Web Application Firewalls

Hackers are often successful because they are able to

attack a site as often as they want. By using brute force

attacks they can try thousands, if not millions, of automated

attacks within minutes via web-bots (website parsers). Given

enough attempts, a vulnerability will be found because no

system is 100% secure. To prevent these brute force attacks,

web application firewalls can be implemented. These require

much more skill than the average web developer and therefore

tend to be more expensive and time consuming than basic

input validation. These firewalls begin by learning the

behavior of the application. They then profile the server‟s

traffic and make intelligent decisions to determine if a user is

not behaving as intended. The breakthroughs in the data

mining field have provided some powerful tools to help with

anomaly/ intrusion detection and behavior analysis. These

firewalls can view access records and say “Hey, wait a

second! This user just attempted 4,000 form submissions and

accessed links very systematic within that last two minutes. I

will not allow his IP to access the server anymore.” Again,

creating these defenses can be very resource heavy and in

many cases might be out of an organization‟s scope. On the

other hand, banking companies such as Bank of America,

TCF, or Wells Fargo, which all deal with personal and

corporate finances, are ethically obligated to invest the time

and money into these firewalls. In the future, this technology

will advance and become cheaper and more precise allowing

smaller operations to utilize its incredible added security.

In conclusion, nobody can guarantee where web

application security will be in the future, but we can set

ourselves up for optimal success by properly educating the

next generation of web developers and constantly raising

security awareness. It must be common knowledge to begin

implementing security from the conception of web

applications. Since methods of attacks are constantly

changing and being redeveloped, it is more important than

ever to keep developers up-to-date on the latest forms of

attacks and their prevention measures. It is imperative that

programmers work together to mitigate the number of

vulnerabilities in their code. The new frontier of internet

security is like the Wild West. It is an ongoing battle between

the good guys and the bad guys; anything can happen at any

moment and momentum can shift without a moments notice.

Pick up a badge and become a new sheriff in town. Do not let

ignorance be an excuse. You now know how easy it is to

attack a web application and, even more importantly you now

know how easy it is to defend against. Take some security

classes, or at least read a few security books, so that when you

are asked to create a web application, you will know just how

important security is and you will be able to implement a

secure system.

Further Considerations

Even if the client and server validate input, further security

precautions can be taken. Other things to consider:
 Output validation

 PHP Preferred Statements

 SQL Stored Procedures

 Data Encryption

 Secure Socket Layer (SSL)

VII. CONCLUSION

With web applications providing a plethora of quick

and efficient services to users all around the globe, the security

of their information has never been more important. People

can access their bank and email accounts, purchase goods and

services, and connect with other people around the globe from

anywhere with an internet connection. Although this is very

convenient, it also presents a problem. A bank like

WellsFargo can receive thousands of web site hits a day from

nearly anonymous users. These hits may be malicious

attempts at logging in. These login submissions may contain

special characters to alter the intended use and gain improper

access to information. For this reason, when designing the

security of one's web application, one must never trust user

input. One must treat all data entering a web application from

an outside network connection as potential harmful. XSS

attacks are complex and are not going away anytime soon due

to the increasing number of sites that mainly rely on user

generated content. With proper input validation and

sanitization, most of the minor security risks can be

minimized. It is difficult to fully secure a web application

when they heavily depend on user input which is why it is

important to build security into an application from the start

and have all code peer reviewed by a professional. This

research is merely a gateway to the rest of the security

implications web applications face; hackers are not going

away any time soon and it is imperative that every web

developer understands the basics that have been laid out and,

furthermore, takes it upon themselves to pursue further

protection means and stay up-to-date on current security

practices.

REFERENCES

[1] Anley, C., Grindlay, B., Heasman, J., & Litchfield, D. (2005). The
Database Hacker's Handbook: Defending Database Servers. New York,
NY: Wiley.

[2] Begg, C. E., & Connolly, T. M. (2009). Database Systems: A Practical
Approach to Design, Implementation and Management (5th Edition) (5
ed.). Toronto: Addison Wesley.

[3] Bertino, E., & Sandhu, R. (2005). Database security-concepts,
approaches, and challenges. IEEE Trans.Dependable Secur.Comput.,
2(1), 2-19. Retrieved from http://dx.doi.org/10.1109/TDSC.2005.9

[4] Buehrer, G., Weide, B. W., & Sivilotti, P. A. G. (2005). Using parse tree
validation to prevent SQL injection attacks. Paper presented at the SEM
'05: Proceedings of the 5th International Workshop on Software
Engineering and Middleware, Lisbon, Portugal. 106-113. Retrieved from
http://doi.acm.org/10.1145/1108473.1108496

[5] Cannings, R., Dwivedi, H., Lackey, Z., & Stamos, A. (2007). Hacking
Exposed Web 2.0: Web 2.0 Security Secrets and Solutions (Hacking
Exposed) (1 ed.). New York: Mcgraw-Hill Osborne Media.

[6] Cavazos, E., & Morin, G. (1994). Cyberspace and the Law: Your Rights
and Duties in the On-Line World. London: The Mit Press.

[7] Cross, Jason. Personal interview. 29 Mar. 2010.

[8] Daswani, N., Kern, C., & Kesavan, A. (2007). Foundations of Security:
What Every Programmer

[9] Needs to Know (Expert's Voice). New York: Apress.

[10] Elmasri, R., & Navathe, S. B. (2006). Fundamentals of Database
Systems (5th Edition) (5 ed.). Toronto: Addison Wesley.

[11] Grossman, J., Hansen, R., Rager, A., Fogie, S., & Petkov, P. (2007).
XSS Attacks Cross Site Scripting Exploits &Defense - 2007 publication.
Rockland: Syngress Pub., 2007.

[12] Guimaraes, M. (2006). New challenges in teaching database security.
Paper presented at the InfoSecCD '06: Proceedings of the 3rd Annual
Conference on Information Security Curriculum Development,
Kennesaw, Georgia. 64-67. Retrieved from
http://doi.acm.org/10.1145/1231047.1231060

[13] Huang, Y., Huang, S., Lin, T., & Tsai, C. (2003). Web application
security assessment by fault injection and behavior monitoring. Paper
presented at the WWW '03: Proceedings of the 12th International
Conference on World Wide Web, Budapest, Hungary. 148-159.
Retrieved from http://doi.acm.org/10.1145/775152.775174

[14] Huseby, S. H. (2004). Innocent Code: A Security Wake-Up Call for
Web Programmers (1 ed.). New York, NY: Wiley.

[15] Jim, T., Swamy, N., & Hicks, M. (2007). Defeating script injection
attacks with browser-enforced embedded policies. Paper presented at the
WWW '07: Proceedings of the 16th International Conference on World
Wide Web, Banff, Alberta, Canada. 601-610. Retrieved from
http://doi.acm.org/10.1145/1242572.1242654

[16] Juillerat, N. (2007). Enforcing code security in database web
applications using libraries and object models. Paper presented at the
LCSD '07: Proceedings of the 2007 Symposium on Library-Centric
Software Design, Montreal, Canada. 31-41. Retrieved from
http://doi.acm.org/10.1145/1512762.1512766

[17] Kals, S., Kirda, E., Kruegel, C., & Jovanovic, N. (2006). SecuBat: A
web vulnerability scanner. Paper presented at the WWW '06:
Proceedings of the 15th International Conference on World Wide Web,
Edinburgh, Scotland. 247-256. Retrieved from
http://doi.acm.org/10.1145/1135777.1135817

[18] Kamra, A., Bertino, E., & Lebanon, G. (2008). Mechanisms for database
intrusion detection and response. Paper presented at the IDAR '08:
Proceedings of the 2nd SIGMOD PhD Workshop on Innovative
Database Research, Vancouver, Canada. 31-36. Retrieved from
http://doi.acm.org/10.1145/1410308.1410318

[19] Lucca, G. A. D., Fasolino, A. R., Mastoianni, M., & Tramontana, P.
(2004). Identifying cross site scripting vulnerabilities in web
applications. Paper presented at the WSE '04: Proceedings of the Web
Site Evolution, Sixth IEEE International Workshop, 71-80.

[20] PHP. (n.d.). Wikipedia, the free encyclopedia. Retrieved March 12,
2010, from http://en.wikipedia.org/wiki/PHP

[21] PHP Security. (n.d.). PHP: Hypertext Preprocessor. Retrieved March 13,
2010, from http://us.php.net/manual/en/security.php

[22] PHP Tutorial. (n.d.). W3Schools Online Web Tutorials. Retrieved
March 12, 2010, from http://www.w3schools.com/php/default.asp

[23] PHP Tutorials. (n.d.). phPro.org. Retrieved March 14, 2010, from
http://www.phpro.org/

[24] Rietta, F. S. (2006). Application layer intrusion detection for SQL
injection. Paper presented at the ACM-SE 44: Proceedings of the 44th
Annual Southeast Regional Conference, Melbourne, Florida. 531-536.
Retrieved from http://doi.acm.org/10.1145/1185448.1185564

[25] Roichman, A., & Gudes, E. (2007). Fine-grained access control to web
databases. Paper presented at the SACMAT '07: Proceedings of the 12th
ACM Symposium on Access Control Models and Technologies, Sophia
Antipolis, France. 31-40. Retrieved from
http://doi.acm.org/10.1145/1266840.1266846

[26] Sammut, T. (n.d.). Understanding SQL Injection. Cisco Systems, Inc.
Retrieved March 14, 2010, from
http://www.cisco.com/web/about/security/intelligence/sql_injection.html

[27] SQL Injection Walkthrough. (n.d.). SecuriTeam.com. Retrieved March
14, 2010, from
http://www.securiteam.com/securityreviews/5DP0N1P76E.html

[28] Wassermann, G., & Su, Z. (2008). Static detection of cross-site scripting
vulnerabilities. Paper presented at the ICSE '08: Proceedings of the 30th
International Conference on Software Engineering, Leipzig, Germany.
171-180. Retrieved from http://doi.acm.org/10.1145/1368088.1368112

[29] Wurzinger, P., Platzer, C., Ludl, C., Kirda, E., & Kruegel, C. (2009).
SWAP: Mitigating XSS attacks using a reverse proxy. Paper presented
at the IWSESS '09: Proceedings of the 2009 ICSE Workshop on Software
Engineering for Secure Systems, 33-39. Retrieved from
http://dx.doi.org/10.1109/IWSESS.2009.5068456

