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Abstract—Motion deblurring is one of the most diffi-
cult photograph restoration problems that has been ap-
proached. There are many obstacles associated with motion
deblurring most of these revolving around estimation of
the camera’s motion. It is difficult to ascertain accurate
information about a camera’s movement by analyzing an
image and most deblurring algorithms make unrealistic
assumptions about the blur prior to the blur kernel
estimation. Consequently, most current image deblurring
algorithms produce poor and inconsistent results.

I. INTRODUCTION

Motion blur is a common feature of modern
photography. Pictures taken out the window of a
moving car are likely to be blurry. If the exposure
time is long enough, handheld cameras can experi-
ence significant motion blur as well. Any camera
that is not placed on a tripod is susceptible to
unexpected movement. Motion blur has become a
more common problem as consumer cameras have
gotten smaller. The closer the operator’s hands get
to the position of the sensor, the more each slight
movement will be magnified in the resulting image.

The goal of motion deblurring is to remove the
motion blur from a photograph that was taken
while the camera moving. This is one of the most
difficult photograph restoration problems that has
been approached. There are many tools available,
both free and commercial, that attempt to ‘undo’
motion blur but most are largely ineffective when
dealing with real life motion blurs because there
are a number of common blur types that standard
deblurring algorithms are unprepared to deal with.
Several of these obstacles, and methods that are
being developed to work through them, will be
described in Section III-C.

II. SURVEY

Since the invention of the camera, photographers
have understood the problem of camera shake. In or-
der to achieve clean, sharp photos, the camera must
remain steady while the aperture is open. However,
in certain situations, it can be almost impossible to

keep the camera perfectly still. Over the years, many
different methods have been introduced to address
this issue, but each has had its flaws.

A. Definition

If a significant amount of movement occurs while
the camera’s aperture is open, the quality of the re-
sulting image will be compromised. Some cameras
are more susceptible to camera shake than others.
Small, lightweight cameras are particularly sensitive
to camera shake because the closer the operator’s
hand gets to the camera’s sensor, the more each
tiny hand movement will be magnified. [4] This
is a pervasive problem because small, lightweight
cameras are the preferred style of a significant
portion of today’s camera users. There are several
factors that influence the likelihood of bad camera
shake. Low light image capture is the cause of many
blurry images. When photographing in low light, in
order to avoid dark or grainy images, the exposure
time must be lengthened. The longer the exposure
time, however, the higher the chance of a twitch that
could distort the final image. Optical zoom can also
play a part in blurring an image as small movements
will be magnified.

B. Background

When cameras were first put to use they were
heavy and clumsy. Camera shake was not a per-
vasive problem at the time because they could not
be operated in hand. Early cameras would always
be placed on a table or tripod when fired and so
any image blurring would necessarily come from
the motion of the subject not motion of the camera.
The tripod remains the most consistent way to
ensure sharp images. In most situations, however,
the photographer does not want to carry along a
tripod, or does not have the time to set one up. For
these reasons, most camera shots taken today are
hand held and are, therefore, susceptible to camera
shake.



“The most common commercial approach for re-
ducing image blur is image stabilization” [8] which
attempts to counteract camera shake “by offsetting
lens elements [Lens Stabilization] or translating the
sensor [Sensor Stabilization]”. Fig 1, [8] For the last
30 years, Image Stabilization has been the primary
method used to reduce image blurring as a result
of excessive camera shake. Canon was one of the
first companies to introduce the image stabilizer. In
1995 they developed a stabilized, EF75-300mm lens
for SLR cameras.[1] The new technology was well
received and Canon went on to release more lenses
that utilized image stabilization. This technology
proved effective for standard shooting, but these
techniques were not powerful enough for macro
photography. When the subject is very close, or
highly magnified, the effects of camera shake are
much more noticeable and the original image sta-
bilizer lenses simply were not good enough to suf-
ficiently counteract blurring in these situations. [1]
In 2009 Canon released the EF100mm macro lens
for Digital SLR cameras, which included what was
called “Hybrid” Image Stabilization, an expanded
image stabilization technology that stabilized not
only the image being seen by the sensor, but also the
image displayed on the camera’s LCD screen. “This
is especially relevant to handheld shooting at 1x,
since the inability to properly compose and focus
due to a shaky image in the viewfinder makes it
extremely difficult to record sharp images.” [1]

=-\ibratignGyro
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Fig. 1: Canon’s Lens Stabilization technology.

method for counteracting the effects of camera
movement during exposure ‘“however, it does not
counteract the actual camera motion during an ex-
posure nor does it actively remove blur—it only
reduces blur.” [8] For these reasons, it was necessary
to introduce a new method for blur removal, this
time via post-production.

For situations wherein Image Stabilization was
ineffective, there are methods that attempt to ‘undo’
the blurring. There are many different methods each
of which produces vastly differing results.[9] In
specific situations, certain algorithms can be use-
ful, however,there are problems associated with the
theory behind this method.

III. TECHNICAL ANALYSIS

Kernel
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Fig. 2: The Motion deblurring pipeline.

A. The Deblurring Pipeline

The general theory behind motion deblurring is
fairly simple and can be broken down into two steps.
The process is displayed in Fig. 2. We start with
a blurry image that we want to appear sharp and
clear. The first thing we need to know in order
to fix the image’s blurriness is how the camera
was moving at the time the picture was taken.
Discovering this is called “blur kernel estimation”.
There are several approaches that can be used to

Image Stabilization can be a very effective accomplish this. These will be addressed further in
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Section III-C. Once we have acquired the necessary
information about the camera’s movement, we move
on to the second step in the deblurring process:
“Deconvolution”. In a blurry image, the individual
pixels have been spread around in a “pattern”. The
blur kernel tells us what this pattern is, and using the
kernel as a reference to determine the direction and
intensity of the spread, the process of deconvolution
can undo the blur by mixing color values taken from
the affected areas and placing them back in their
proper location. The deconvolution process relies
heavily on an accurate kernel.

B. The Blurred Image

A blurry photograph can be defined by Equation 1
[31,[7],[4]. In this equation, ‘B’ denotes the blurred
image which is the camera’s direct output. ‘I’ is the
latent image, or the intended result of the deblurring
process. The symbol ‘®’ is used to denote pixel
convolution. ‘k’ denotes the image’s specific blur
kernel, a piece of information defining the camera’s
motion during exposure. The blur kernel will be
further defined in Section III-C. And ‘n’ represents
image noise, which must be taken into account
because noise is a common, and often unavoidable,
problem in digital photography. Image noise affects
the color values of individual pixels within the
image and makes both kernel estimation, and decon-
volution more difficult and less consistent [13],[14].
However, the issue of image noise is not a topic of
this paper and will not be discussed at length.

B=1I®k+n (D

In theory, this Equation 1 can be solved for
the latent image, but difficulties arise due to the
presence of two unknowns: the latent image ‘I’,
and the camera’s movement during exposure ‘k’.
Solving for the ‘I’ is ultimately our goal, but this
can only be done if we are able to insert an accurate
‘k’. The first step therefore becomes determining the
value of ‘k’. This is done through a process called
‘Blur Kernel Estimation’.

C. Blur Kernel Estimation

The blur kernel is a piece of information which
represents the motion of the camera at the time
of the exposure, and determines how each pixel
is spread throughout the image. Each pixel of the
latent image can be defined by a function of the
pixels surrounding it. This is called the Point Spread
Function (PSF). The blur kernel is the visual rep-
resentation of the PSE. The kernel is generally rep-
resented by a small, square, black and white image
wherein the relative brightnesses of the individual
areas represent the extent to which the pixel in
question was spread. Black means no spread, white
means full spread.

Fig. 3: An image with a discernible blur kernel. The
camera’s movement at the time of exposure can be easily
determined due to the bright streaks from the street lights.

Fig. 4: The approximate kernel for the blurred image
shown in Fig 3.

An example of a blur kernel is given in Fig. 4,
the blurry image from which this kernel is derived
is seen in Fig. 3. It is easy to understand how the
kernel in Fig. 4 matches the image in Fig. 3. The



light streaks leave a obvious motion path across the
image and tell us exactly how the camera moved.
However, it is not always this easy to determine
camera motion. And, in many cases, it is nearly
impossible to be certain that you have the right
kernel because results can be acquired using any
kernel, and there is no information with which
the resulting image can be compared to ensure its
accuracy.

Using Equation 1, we can apply any blur kernel
and solve for ‘I’. Any kernel input that we use will
result in an image, the trouble is, most outputs we
acquire are nothing like the output we want [5].

Fig. 5: An original, blurry image with an unknown blur

kernel.

Fig. 6 demonstrates the problem of multiple solu-
tions in kernel estimation. (a) is the image resulting
from the deconvolution process using blur kernel
(b). (c) is the image resulting from the deconvolu-
tion using kernel (d). And (e), the accurate output,
is the result when kernel (f) is used. The original
blurry image is shown in Fig. 5. Kernel (b) most
accurately describes a gaussian blur which would,
in most cases, be caused, not by a moving camera,
but by a camera which was out of focus. (d) displays
a blur kernel describing a vertical camera translation
which was perfectly constant in speed and direction.
Both of these kernels produce extremely inaccurate
results and clearly do more harm than good. Kernel

Fig. 6: A blurred image has many potential kernel so-

lutions. All three of these images can be acquired from
the image given in Fig. 5 through the same deblurring
process if given a different blur kernel. Image (a) results
from deblurring the original image using kernel(b). Image
(c) results from deblurring the original image using kernel
(d). Image (e), the desired solution, results from deblurring
the original image using kernel (f).

(f) is the correct blur kernel (or close to it).

An issue with many current kernel estimation
algorithms is that they make some unrealistic as-
sumptions about the camera’s movement. First, it is
likely that the algorithm will assume that the cam-
era movement is entirely comprised of translation
within the XY plane Fig. 7(a). In reality, however,
the hand held camera is more likely to translate
within XYZ space and rotate around all three axes
as well Fig. 7(b) [9]. In general, kernel estimation
algorithms are not equipped to deal with this 6-



(b)

Fig. 7: Most motion deblurring tools make unrealistic
assumptions about how the camera was moving at the
time of exposure. (a) Camera motion as anticipated by
most kernel estimation algorithms [9]. (b) A much more
accurate depiction of real camera motion. [9]

dimensional motion and so the kernel estimation is
likely to be inaccurate. Second, kernel estimation
algorithms often assume that the camera’s move-
ment was constant in speed and direction. Due
to the erratic and unpredictable nature of human
movement, it is extremely rare that this would
occur outside of a controlled environment. These
constraints drastically narrow the range of blurs
that can be calculated and dealt with using current
technology. One solution to these limitations has
been proposed by Raskar et al. in their use of a
coded, “fluttered” shutter when taking photos with
long exposure times [11]. During the exposure time,
the shutter will be “fluttered” open and closed at
a coded rate creating a pattern within the blur
which can be more easily calculated. “We compute a
near-optimal binary coded sequence for modulating
the exposure and analyze the invertibility of the
process” [11].

Another, arguably more pressing, obstacle faced
by deblurrers is the issue of Spatial Variance and/or
Moving Subjects. In nearly all cases, a deblur-
ring algorithm assumes that the PSF is equivalent
throughout the image. In reality, this is very rarely
true. The only situation under which this assumption
would be completely accurate is if the photographer
was shooting a photo directly perpendicular to a flat
surface filling the camera’s view. If the photograph

contains any depth, or an object moving through the
scene, there will be different blur patterns through-
out the image. “The spatially variant blur kernel
estimation is an even more difficult problem. The
blur kernel, in this case, may vary in size, shape,
and values among pixels. This generality makes
it extremely difficult to estimate an appropriate
PSF” [12]. “the convolution model [The blur equa-
tion seen in Equation 1] is often oversimplified for
many practical motion-blurred images... Practical
motion blurring tends to be a spatially varying blur-
ring process” [6]. Fig. 8 demonstrates the problem
of spatial variance in blurred images. We can see
from the direction of the blur that the camera was
being translated approximately horizontally through
the scene, but the blur is not consistent throughout
the image. The juice bottle in the foreground shows
clear signs of horizontal blurring while the water
bottle in the background simply shows signs of
defocus blur. Clearly, the reason for this is that
the camera was focused on the juice bottle and
translated horizontally during exposure. The ob-
jects’ relative distances from the camera caused
parallax displaying an apparent faster movement
of the juice bottle in the foreground, and relative
stillness of the water bottle in the background.
A similar effect can be observed when an image
contains a moving object whose motion does not
match the motion of the camera. The moving object
will appear blurrier than the scene around it and the
blur kernel of the image will not be consistent. As
noted, the traditional blur model, Equation 1, is not
capable of supporting inconsistent blur kernels and
fails when confronted by a spatially variant image
or an image containing moving objects [10],[12].
Many attempts have been made to solve this prob-
lem [10],[2],[12],[6],[8]. Anat Levin and his team
at MIT have developed a camera rig which creates
specifically designed motion blur which is able to
produce identical blur throughout an image contain-
ing moving objects [10]. This photograph, then, can



be accurately deblurred using a single blur kernel.
Qi Shan and his team at the Chinese University of
Hong Kong have suggested that the theory behind
motion deblurring should be completely rewritten.
Their model involves creating a transparency map
of the blurred image and determining a specific blur
value at each location [12],[7]. The advantage of
this method is that it can, in theory, deal with very
complex blur patterns including rotational blurs,
which are difficult to define.

Fig. 8: A spatially variant scene with motion blur.

Another approach for blur kernel calculation
is to avoid the estimation process altogether by
measuring it at the time of exposure. Neel Joshi
with his team at Microsoft Research, and Adams
et al. through the “Frankencamera” project have
developed external camera attachments built from
inexpensive gyroscopes and accelerometers which
are capable of tracking and recording the camera’s
acceleration through space and rotation around the

Fig. 9: Image deblurring using Transparency Map-
ping. [12]

Fig. 10: 6D motion tracking rig developed by Joshi et. al.
(8].

sensor [8],[2]. The motion tracking rig designed by
Joshi et. al. can be seen in Fig. 10. “The gyroscope
object... tags frames with the IMU [Inertial Mea-
surement Units] measurements recorded during the
image exposure.” [2]. This IMU information can
be used to determine whether or not the camera
was sufficiently steady to produce a sharp image
and pass the information to the photographer [2],
or it can be used to calculate an accurate blur
kernel for the purpose of deblurring [8].“We derive
a model that handles spatially-varying blur due to
full 6-DOF camera motion and spatially-varying
scene depth...” [8]. Utilizing either of these methods,
the complex task of blur kernel estimation is not
necessary. Though both teams hope this idea will
eventually be adopted by camera manufacturers,
the techniques are still under development and,
currently, have not been applied to consumer cam-
eras [2].

D. Deconvolution

Deconvolution is the process of recalculating
color values within the blurry image based on the
estimated blur kernel. The deconvolution process
uses the blurred image equation solved for the
Latent image ‘I’ (Equation 2) and inserts the es-
timated, or recorded, blur kernel as the value of
‘k’. The deconvolution algorithm, then, recalculates
the color value of each pixel as a function of the
pixels surrounding it. The results of deconvolving
the blurred image from Fig. III-B are shown in



Fig. 11. This deconvolution was performed using
the blur kernel shown in Fig. 6(f). In contrast
to the difficult problem of kernel estimation, the
science behind deconvolution is well founded and
relatively straightforward. In terms of research and
development, the area of image deconvolution is not
specifically lacking. So, if you have managed to
calculate an accurate blur kernel, you can achieve an
accurate deblurring of the image. The comparison
of different deconvolution algorithms is less about
determining which algorithm produces the best re-
sults, and more about the differences in speed [4].

2

Fig. 11: The results of the deblurring process using the

image displayed in Fig. 5, and the blur kernel displayed
in Fig. 6(f). The kernel calculation and deconvolution was
performed by Robust Motion Deblur.

IV. FUTURE TRENDS

As has been noted, the deblurring process is
by no means perfect. There are several problems
with the majority of current deblurrers for which,
so far, reliable solutions have not been located.
Most of these problems appear in the area of blur
kernel estimation. There are few real motion blurs
whose kernels can be accurately calculated with the
algorithms that are currently available to us (as will

be demonstrated in Section V). Some say that, with
more work, we can create improved algorithms for
better kernel estimation [4], others say that kernel
estimation is not reliable even in theory and that
we need better ways to measure the camera’s mo-
tion [8], still others would say that the entire theory
behind kernel deconvolution is flawed and that the
rules should be completely rewritten [12]. In any
case, progress is being made. Major improvements
have been made both in hardware and software
development. The continued research and varied
approaches to this problem make it conceivable that
a solution will eventually be reached. Currently,
however, it is unclear which approach will prove
to be the best.

V. MOTION DEBLURRING PROJECT

(a) N () ©)

Fig. 12: The three deblurring tools used in the deblurring
tests. (a) SmartDeblur. (b) Deblur My Image. (c) Robust
Motion Deblur.

[

A. Background

In order to better understand the deblurring pro-
cess and the specifics of its uses and limitations,
I downloaded and tested several pieces of motion
deblurring software. I located and tried at least 5
different options, but narrowed my final selection
to three which, together, I believe, offer a good
variety of kernel estimation approaches. The first
is called “SmartDeblur” Fig. 12(a). SmartDeblur is
a very automatic deblurring process with very few
manual adjustments available. Smart Deblur is a
commercial product for which I have not yet paid
the activation fee so, currently, every output that |
receive has the words “SmartDeblur Unregistered
Version” overlaid on top of the image. The sec-
ond deblurring tool I chose is called “Deblur My



Image” Fig. 12(b). Deblur My Image, in contrast
to SmartDeblur, relies entirely on manual kernel
estimation. Once the blurry image is loaded, the
blur kernel can be input either by tracing the path
of the blur using a Bezier curve, or by inputting
a blur kernel as an image file. After the kernel is
traced or input, the program inserts the information
into the deconvolution equation (Equation. 2) and
calculates the result. The third and final tool that I
chose is called “Robust Motion Deblur” Fig. 12(c).
Kernel estimation with “Robust Motion Deblur” is
neither entirely automatic, nor completely manual,
so this program fits nicely between SmartDeblur
and Deblur My Image. Robust Motion Deblur was
created by Li Xu and Jiaya Jia, two members of the
Computer Science and Engineering department at
The Chinese University of Hong Kong [13]. This
tool was created specifically for the purpose of
expanding the field of motion deblurring so, not
only is it free, it is also very well documented. The
algorithms and methods behind this program are
described in detail in a technical paper written by
its creators. Using these three deblurring tools and
a Canon T3i, I began testing the general capabilities
of easily accessible motion deblurring products.
Some of my results can be seen below.

B. Deblurring Tests

Fig. 13 show an example of a spatially variant
image. (a) is the original blurry image. (b) is the
output of Robust Motion Deblur. This is certainly
an improvement over the original image, but it is not
perfect. The jar at the center of the image is much
clearer than it was before the deblurring, but the
deconvolution process left some unsavory ringing
around the edges of the objects in the scene. The
output of Deblur My Image is displayed in (c). It
is debatable as to whether or not this is actually an
improvement over the original image. These results
are similar to the output of a simple sharpening
filter. Some of the details of the image have been
sharpened slightly, but the ringing that has been

10

Fig. 13: Outputs of three different motion deblurring tools.
(a), The Original image. (b), Robust Motion Deblur. (c),
Deblur My Image. (d), Smart Deblur.

left by the deconvolution process is much more
noticeable than the blur in the original image. (d)
is the output of SmartDeblur. This deconvolution
output, apart from the watermark and slightly more
powerful edge sharpening, is quite similar to the
output in (b). The blur spread has been compressed,
but is still perceivable. Some artifacts have been
left, and/or created, by the deblurring tool. Overall,
however, the result is a definite improvement over
the original with enhanced detail and a somewhat
less noticeable pixel spread. The main obstacle
this image poses is spatial variance. The angle at
which the photo was taken, the shape and position
of the objects within the scene, and the camera’s
translation produce a highly inconsistent motion
blur which cannot be deblurred with a single blur
kernel. Since I was not able to locate a deblurring
tool capable of estimating, or deconvolving several
kernels simultaneously, I was not able to achieve
satisfactory results when dealing with spatially vari-
ant images.

Fig. 14 displays the results of motion deblurring



- Vo= .
- -
1
= ¥ P
- zZ 2
= "
EOQZT =pF 0O Z-3
EFEIX-+ LEPED-=4
EECTZ D = EECPED=5
I E Z B I EDFCcZrFr=§
EEL EEZD f EE FEEOFPZP =)
== = > PEFFOTES
- - -3 ; a
) Original _Rubu.'it
-
. \ =
i 2 - i
g -z B 2
r ‘ﬂ d i )
B O &z O Z3
L D4 P ED %
IS0 S (P EC D 5
2 S 5 P e P 3 ED-F C ZF 8
X0 D 7 B P -0 P 2B = i
;:v-:*,::: _:.ﬂ- : ..:ff?e:‘z:‘: a

Deblur My Image SmartDeblur

Fig. 14: A spatially invariant image with a medium sized
horizontal motion blur, and three deblurring attempts. (a)
is the original image. (b) is the output of Robust Motion
Deblur. (c) is the output of Deblur My Image. (d) is the
output of Smart Deblur.

on a spatially invariant image with a larger amount
of pixel spreading. As in the previous example, Ro-
bust Motion Deblur made significant improvements
to the original image while retaining some ringing
and discoloring from the deblurring process. It is a
definite improvement in that every letter on the eye
chart is now legible, but there is still an undesirable
‘fuzziness’ to the text. Deblur My Image, again,
seemed to achieve nothing more than some sharper
lines in the image, and it is, again, debatable as to
whether the final output is any improvement over the
original. After repeatedly getting poor results from
this tool, I came to the conclusion that manually
estimated blur kernels are rarely the best option. The
kernels created by both SmartDeblur and Robust

Motion Deblur have consistently achieved better
results than my best efforts when it came to kernel
estimation. Contrary to the previous test, Smart-
Deblur produced an image less sharp than that of
Robust Motion Deblur. SmartDeblur did produce
improved image clarity but it was not able to reduce
the blur as much as Robust Motion Deblur. This test
did not suffer from spatial variance but it seems to
be pressing the limits of the blur size that is able to
be processed by the tools I was using.
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Fig. 15: A spatially invariant image with significant hor-
izontal motion blur, and three deblurring attempts. This
diagram displays the original blurry image alongside the
outputs of Robust Motion Deblur, Deblur My Image, and
SmartDeblur respectively.

The test documented in Fig. 15 takes the blur
level even higher. This test was done to determine
if any of the blur tools was able to improve upon
a blur so intense that it rendered the entire image
undecipherable. (a) is the original image, (b) is
the output of Robust Motion Deblur, (c) is the
output of Deblur My Image, and (d) is the output
of SmartDeblur. The only result that appears to be
even slightly more readable than the original image
is (b). This was not surprising. The results that I
had acquired in previous tests led me to anticipate
better results from Robust Motion Deblur than from
the other two. It is also noted in its documentation
that Robust Motion Deblur is designed to accurately
calculate large blur kernels which is exactly what is
necessary to counteract significant pixel spreading.
However, even Robust Motion Deblur was not able

11



to satisfactorily deblur the image, and none of the
“deblurred” images are improved to the point of
making the words legible.

Fig. 16: A blurry image wherein the manual kernel esti-

mation seemed to have a slight edge on the automatic
deblurrers. The original image is on the top left. The
result of Robust deblur is on the top right. The output
of Deblur My Image is on the bottom left. The output of
SmartDeblur is on the bottom right.

The image in Fig. 16 displays the results of the
only test I ran wherein “Deblur My Image” (the
software implementing manual kernel estimation)
seemed to produce the best results. None of the
programs gave specifically good outputs, but the
output of “Deblur My Image” seemed to be the
sharpest. The blur was relatively extreme, more
so than the other two programs could determine.
The blur was also very consistent throughout the
image, and the blur pattern was easily discernible
to a human. These seem to be the circumstances
under which manual kernel estimation is superior
to automatic kernel estimation.
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Fig. 17: A synthetically blurred image and the results of
deblurring. The deblurring was done with Robust Motion
Deblur

Fig. 17 displays a test done with a synthetically
blurred image. The original photograph was not
motion blurred. The image on the left was blurred
synthetically with Photoshop’s motion blur filter.
The image on the right is the result of deblurring the
synthetically blurred image. The deblurring process
was able to restore the image’s detail much more
effectively than in any test I ran with real motion
blur. As was noted in Section III-C, deblurring
tools tend to assume that blur kernels are constant
in regard to speed and direction, and are consis-
tent throughout the image. The blur filter that was
applied to the image perfectly met both of these
criteria and, consequently, the deblurring process
worked very well. Unfortunately, it is extremely rare
to encounter a motion blur this consistent in real life.

C. Results

I was somewhat disappointed by the deblurring
quality I was able to achieve with these tests. Of
the three tools I was using, Robust Motion Deblur
seemed to perform the best overall, but none of
the three tools have, yet, been able to deblur any
but the simplest of motion blurs. However, I plan
to continue running tests and hope to determine
more accurately what features make a motion blur
“deblurrable”.
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VI. CONCLUSION

Motion deblurring is a difficult problem. The
range of complex techniques that must be taken into
account has, so far, rendered the problem unsolvable
for most blurs. Real motion blur is far too complex
to be consistently and accurately deblurred using
tools that are readily available. There are several
projects under development formulated to address
these problems. Some follow the accepted kernel
deconvolution style whereas others implement new
blur calculation strategies. [2], [8], [12] Hopefully,
future combinations of these ideas will create a
more robust and reliable deblurring package. But
there is much more work to be done before that
point can be reached.
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APPENDIX

A. CSBSJU Experiences as preparation for CSCI373 and beyond

The course work I have done for Computer Science classes at St. John’s/St. Ben’s has proved invaluable
for this current project and in other areas as well. One of the most prominent skills that I have developed
throughout my time at CSBSJU is programming which, though it has been useful in a number of situations,
was not necessary for this particular project. Despite the fact that this project did not involve what is,
seemingly, the most important CSCI discipline, there were many lessons, techniques, and thought processes
that came in handy regarding this semester’s project.

1) Technical Writing: One of the major things that came in handy this semester was my experience with
technical writing. All through high school, and the first few semesters of college, my writing experience
had been, mostly, limited to book reports, reflection papers, essays, etc. Consequently, I had become adept
at making my train of thought sound good on paper. This, however, was entirely unlike what was required
for this course. Technical writing, rather than relying on flowery language, sentence flow, and rhythm,
requires a much more methodical approach, implementing nothing more than blatantly clear statements
one after another, each making its point as simply and briefly as possible. Initially this was a bit difficult
as it required a very different writing approach. Classes that are more based around writing, oddly, seemed
to have less of a focus on the content of the writing than on how it was written and how much of it
there was. I have, several times, been lauded by English professors and writing instructors, but always,
specifically, for writing style. I found that, if I wrote down enough interesting sentences, I could attain
very good grades on writing projects without really having much of a point to make. The difference
with technical writing is that content is the main goal. In contrast to English professors, several Computer
Science professors have promoted accuracy, brevity, and clarity above all else. My experience with writing
in CSCI classes has been: if you don’t have a good point to make, you can’t fake it. CSCI profs will not
hand out good grades to long meandering musings simply because it was a pleasure to read, they would
always prefer to read a well thought-out piece which is as complete and condensed as possible. This was,
essentially, a complete turnaround for me so it took a bit of practice, but, I believe, I have now learned
to apply either style fairly well.

2) Algorithm Analysis/Theoretical Computing: While I didn’t do any actual code writing or executing
for this particular project, it was helpful to have a little bit of experience with algorithm analysis. As
was mentioned in this SOTF paper, one of the main things that can differentiate deblurring options from
on another is the execution speed. Though I could certainly have simply read about execution times, or
tested specific deblurrers for relative speed, it was nice to have some understanding of why one deblurrer
would be sluggish while another is blazingly fast. Though this was only possible for deblurrers whose
source code or algorithm was available to the public.

It was also nice to have some foundation with theoretical computing. Without learning the basics of
how a computer actually functions, the reasons why a deblurrer was designed in a specific way would
have seemed mysterious. The foundations I received in CSCI310 and CSCI339 were extremely beneficial
in understanding the basic nature of computers and why we interact with them the way we do.

3) Data Representation: Most of the data representation skills that proved helpful for this project
revolved around interpretation of data more than creation of data, however the experience I had in courses
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like CSCI230 and CSCI239 creating data structures, flow charts and graphs was useful in acquiring
information for this course. Somehow, I never had any experience reading or writing a flowchart before I
took CSCI230, so that was one specific basic skill that I appreciate being given as far as this project was
concerned.

4) Project outlining: One of the most notable features of CSCI230 (Software Development) was the
idea of project preparation and outlining. Prior to that course, I had never attempted any project that
required such strenuous documentation and planning. I have always been a proponent of the “cross that
bridge when you come to it” approach when it comes to planning so it was quite a new experience to
literally figure out everything about a project before I even begin creating it. It was, however, a valuable
experience. After that project was completed, I was able to grasp just how much time I actually saved by
doing the planning ahead of time instead of trying to make everything work together during the coding
stage. Since the CSCI230 course project, and other more recent projects, I have begun to understand
the benefits of stepping through a project in its entirety before the real work is begun. This approach
has certainly been useful regarding the course project for CSCI373. While much of the semester had
already been broken down into stages for me (an extremely helpful aspect of the course), there was a
high percentage of the planning and preparation that I had to do on my own (which, in the long run, was
also helpful). I believe that my previous experience in project planning, derived from CSCI230 and other
project-heavy courses, were beneficial in completing everything in an accurate and timely manner.

5) Problem Solving: This is one of the most basic skills that I learned throughout my time at CSBSJU,
but it is also one of the most universally applicable and permeating. Since day one of my time in
the St. John’s CSCI program (CSCI161 Intro to Problem Solving), problem solving has been one of
most important points, if not the most important, that has been discussed. Everything Computer Science
project I have completed during the past four years has related, in some way, to problem solving and the
techniques associated with the particular problem at hand. In addition to aiding the speed and accuracy
with which I was able to complete this project, I’ve found that the logical, methodical approach favored
by Computer Scientists (and by computers) has become more prevalent in everyday life. Ever since I
became comfortable with this approach, I naturally resort to very precise, methodical trains of thought
and speech. I have found this to be both good and bad. On one hand, I have become very good at
asking qualifying questions when something is not perfectly clear. And, due to this fact, I very rarely
misunderstand instructions or statements. I also have a tendency to make absolutely certain that my
statements are completely clear. Consequently, my overall effectiveness in personal communication has
been greatly improved and I believe the “think like a computer” strategy has played an important role in
this. On the other hand, I sometimes find myself over analyzing things that people say to make sure that
the syntax is absolutely correct. While this is definitely important when communicating with a computer,
there should certainly be some leeway when it comes to human interaction because, I’'m sure, such over
analysis can become somewhat obnoxious and I will have to make a stronger effort to differentiate my
communication with computers from my communication with other humans. On the whole, however, I
believe this core discipline of Computer Science has proved to be quite a valuable resource in nearly every
aspect of life. And I appreciate all the time and effort each member of the CSBSJU Computer Science
faculty has put into helping me learn this.
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