We have learned a lot about groups. We now turn our attention to a different algebraic structure: rings. For now, think of a “ring” as an abelian group (under addition) that also has a multiplication.
Examples of Rings
Definitions
Proofs about rings
Subrings

Example
The standard example of a ring is \mathbb{Z}, the integers. Then $(\mathbb{Z}, +)$ certainly forms an abelian group, multiplication is closed and associative, and the distributive law holds (in both directions).

Example
Another example of a ring is \mathbb{Z}_n, the integers modulo n. Then $(\mathbb{Z}_n, +)$ certainly forms an abelian group, multiplication is closed and associative, and the distributive law holds (in both directions).

We will focus our attention on \mathbb{Z}_3 and \mathbb{Z}_6 for our examples.

Example
Let $\mathbb{Z}[x]$ be the set of all polynomials with integer coefficients, where
\[
\begin{align*}
(a_n x^n + \cdots + a_1 x + a_0) + (b_n x^n + \cdots + b_1 x + b_0) &= a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 + (b_m + b_{m-1}) x^{m-1} + \cdots + (a_1 + b_1) x + (a_0 + b_0) \\
\text{Multiplication is the usual “FOIL”-type polynomial multiplication.} \\
0 &= 0 x + 0 \\
-(a_n x^n + \cdots + a_1 x + a_0) &= -a_n x^n - \cdots - a_1 x - a_0
\end{align*}
\]
for all $a_i, b_i \in \mathbb{Z}$ and $n, m \in \mathbb{Z}$ with $0 \leq m \leq n$.

Example
Let $n\mathbb{Z} = \{nx \mid x \in \mathbb{Z}\}$ for any integer n, where
\[
\begin{align*}
(na) + (nb) &= n(a + b) \\
(na)(nb) &= n(nab) \\
0 &= n(0) \\
-na &= -na
\end{align*}
\]
for all $a, b \in \mathbb{Z}$. We will use $2\mathbb{Z}$ (the even integers) as our “toy ring.”

Example
Let $M_2(\mathbb{Z}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \in \mathbb{Z} \right\}$ where
\[
\begin{align*}
\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} &= \begin{bmatrix} a + e & b + f \\ c + g & d + h \end{bmatrix} \\
\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} &= \begin{bmatrix} ae + bg & af + bh \\ ce + dg & ef + dh \end{bmatrix} \\
0 &= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \\
-\begin{bmatrix} a & b \\ c & d \end{bmatrix} &= \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix}
\end{align*}
\]
for all $a, b, c, d \in \mathbb{Z}$.
Examples of Rings
Definitions
Proofs about rings
Subrings

Example
Let \(\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \) for any positive integer \(n \), where
\[
\begin{align*}
1. & \quad (a + bi) + (c + di) = (a + c) + (b + d)i \\
2. & \quad (a + bi)(c + di) = (ac - bd) + (ad + bc)i \\
3. & \quad 0 = 0 + 0i \\
4. & \quad -(a + bi) = -a - bi
\end{align*}
\]
for all \(a, b, c, d \in \mathbb{Z} \).

Example
Let \(\mathbb{Z}_n[i] = \{a + bi \mid a, b \in \mathbb{Z}_n\} \) for any positive integer \(n \), where
\[
\begin{align*}
1. & \quad (a + bi) + (c + di) = (a + c) + (b + d)i \\
2. & \quad (a + bi)(c + di) = (ac - bd) + (ad + bc)i \\
3. & \quad 0 = 0 + 0i \\
4. & \quad -(a + bi) = -a - bi
\end{align*}
\]
for all \(a, b, c, d \in \mathbb{Z}_n \). We will use \(\mathbb{Z}_3[i] \) as one of our “toy groups.”

Example
Let \(\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\} \) where
\[
\begin{align*}
1. & \quad (a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2} \\
2. & \quad (a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (bc + ad)\sqrt{2} \\
3. & \quad 0 = 0 + 0\sqrt{2} \\
4. & \quad -(a + b\sqrt{2}) = -a - b\sqrt{2}
\end{align*}
\]
for all \(a, b, c, d \in \mathbb{Z} \).

Example
Let \(\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} \) where
\[
\begin{align*}
1. & \quad (a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2} \\
2. & \quad (a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (bc + ad)\sqrt{2} \\
3. & \quad 0 = 0 + 0\sqrt{2} \\
4. & \quad -(a + b\sqrt{2}) = -a - b\sqrt{2}
\end{align*}
\]
for all \(a, b, c, d \in \mathbb{Q} \).
Example
Let $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$ where
\[(a + b\sqrt{-5}) + (c + d\sqrt{-5}) = (a + c) + (b + d)\sqrt{-5} \]
\[(a + b\sqrt{-5})(c + d\sqrt{-5}) = (ac - 5bd) + (bc + ad)\sqrt{-5} \]
\[0 = 0 + 0\sqrt{-5} \]
\[-(a + b\sqrt{-5}) = -a - b\sqrt{-5} \]
for all $a, b, c, d \in \mathbb{Z}$.

The definition of a ring

Definition
A ring R is a set with two binary operations: addition (denoted by $a + b$) and multiplication (denoted by ab) such that for all $a, b, c \in R$:
\[\text{There is an additive identity 0 such that } a + 0 = a = 0 + a. \]
\[\text{There is an element } -a \text{ such that } a + (-a) = 0 = (-a) + a. \]
\[a + (b + c) = (a + b) + c. \]
\[a + b \in R. \]
\[a + b = b + a \]
\[ab \in R \]
\[a(bc) = (ab)c \]
\[a(b + c) = ab + ac \text{ and } (b + c)a = ba + ca. \]
The ring definition, simplified

In short, a ring R is a set with addition and multiplication such that:

1. $(R, +)$ is an abelian group.
2. Multiplication is associative and closed.
3. There is a left and right distributive law.

Note that the definition of a ring does not allow us to assume the following:

1. Every ring has a multiplicative identity.
2. Every element of every ring has a multiplicative inverse.
3. Every ring has commutative multiplication.

Basically, we cannot assume that R is a group under multiplication. However, some rings have some of these properties. We give them special names when this happens.

1. If R has a multiplicative identity, we call it a unity and denote it by 1. We then say “R is a ring with unity.”
2. If an element $a \in R$ has a multiplicative inverse, we denote it by a^{-1} and call a a unit. (Note that a^{-1} is also a unit).
3. If a ring R has commutative multiplication, we say that R is a commutative ring.

Some definitions

Definition (Short-hand for repeated addition)

Let R be a ring, $a \in R$, and $n \in \mathbb{Z}$. Then

$$n \cdot a = na = a + a + \cdots + a.$$

Definition (Short-hand for adding inverses)

Let R be a ring, $a, b \in R$. Then $a - b$ denotes $a + (-b)$.

Definition

Let R be a ring with unity such that $a \in R$. We say a is a unit if there is an element $b \in R$ such that $ab = 1 = ba$.

Definition

Let R be a ring with $a, b \in R$. We say a divides b if there is an element $c \in R$ such that $ac = b$.

Note that the definition of a ring does not allow us to assume the following:

- Every ring has a multiplicative identity.
- Every element of every ring has a multiplicative inverse.
- Every ring has commutative multiplication.

Examples of Rings

Example

The only units in \mathbb{Z} are 1 and -1.

Example

Some units from $\mathbb{Z}[\sqrt{2}]$ are 1, -1, $3 + 2\sqrt{2}$, and $3 - 2\sqrt{2}$ (note that $1 \cdot 1 = 1$, $-1 \cdot -1 = 1$, $(3 + 2\sqrt{2})(3 - 2\sqrt{2}) = 1$).

Example

In \mathbb{Z}, 3 divides 15 since $3 \cdot 5 = 15$.

Example

In $M_2(\mathbb{Z})$, $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ divides $\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$, since

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}.$$
More definitions

Definition
Let R be a ring with $0 \neq a \in R$. If there exists a nonzero $b \in R$ such that $ab = 0$, then we say that a is a zero-divisor.

Definition
Suppose that R is a ring such that it is commutative, it has a unity, and there are no zero-divisors. Then we say that R is an integral domain.

Example
Find the roots of $f(x) = x^2 - 3x + 2$ (in \mathbb{R}, which is also a ring).

\[x^2 - 3x + 2 = (x - 1)(x - 2) \]

So either $x - 1 = 0$ or $x - 2 = 0$ BECAUSE WE KNOW THERE ARE NO ZERO-DIVISORS IN \mathbb{R}! Note that \mathbb{R} is an integral domain, since 1 is the unity and the multiplication is commutative, and we use this fact whenever we set factors equal to zero to find roots of polynomials.

Example (Non-example)
Consider one of our toy rings, \mathbb{Z}_6. Then $2(3) = 0$, so 2 is a zero-divisor (and so is 3).

So the function $f(x) = x^2 - 3x + 2$ has four roots in \mathbb{Z}_6: 1, 2, 4, 5. We would not find them all by factoring and setting equal to zero.

Definition
Suppose that R is a ring such that it is commutative, it has a unity, and every non-zero element is a unit. Then we say that R is a field.

Definition
The characteristic of a ring R (denoted $\text{char}(R)$) is the least positive integer n such that $na = 0$ for all $a \in R$. If not such n exists, we define $\text{char}(R) = 0$ and say that it has characteristic zero.
Examples of Rings
Definitions
Proofs about rings
Subrings

Example
The real numbers \(\mathbb{R} \) and the rationals \(\mathbb{Q} \) are fields, but the integers \(\mathbb{Z} \) is not a field (for instance, 2 does not have a multiplicative inverse, so it is not a unit). However, \(\mathbb{Z} \) is an integral domain.

Example
\(\text{char}(\mathbb{Z}) = 0 \), \(\text{char}(\mathbb{Z}_3) = 3 \), and \(\text{char}(\mathbb{Z}_6) = 6 \).

In your teams, fill in the following table:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{Z})</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>(\mathbb{Z}_3)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td>(\mathbb{Z}_6)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>6</td>
</tr>
<tr>
<td>(\mathbb{Z}[x])</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>(\mathbb{Z} \oplus \mathbb{Z})</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>(\mathbb{M}_2(\mathbb{Z}))</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>(\mathbb{Z}[i])</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>(\mathbb{Z}_3[i])</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td>(\mathbb{Z}[\sqrt{2}])</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>(\mathbb{Q}[\sqrt{2}])</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>(\mathbb{Z}[\sqrt{-5}])</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>0</td>
</tr>
</tbody>
</table>

Even more definitions

Definition
Let \(D \) be an integral domain. An element \(a \in D \) is called an \textit{irreducible} if \(a \) is not a unit and whenever \(b, c \in D \) with \(a = bc \), then either \(b \) is a unit or \(c \) is a unit.

Note that this is the idea we usually think of as “prime,” which is confusing because . . .

Definition
Let \(D \) be an integral domain. An element \(a \in D \) is called a \textit{prime} if \(a \) is not a unit and whenever \(b, c \in D \) with \(a \mid bc \), then either \(a \mid b \) or \(a \mid c \).

In the integers, the terms \textit{prime} and \textit{irreducible} are equivalent.

Definition
An integral domain \(D \) is called a \textit{unique factorization domain} (usually referred to as a \textit{UFD}) if
- every nonzero, nonunit \(a \in D \) can be written as \(a = p_1 \cdots p_n \) for some irreducibles \(p_i \), and
- if \(p_1 \cdots p_n = a = q_1 \cdots q_m \), then \(n = m \) and \(q_1 \cdots q_m = (u_1 \cdot p_1) \cdots (u_n \cdot p_n) \) for some units \(u_i \in D \).
Example
You know from elementary school that \(\mathbb{Z} \) is a UFD.

Example (Non-example)
The ring \(\mathbb{Z}[\sqrt{-5}] \) is not a UFD. Observe that 6 = 2 \cdot 3 and 6 = (1 + \sqrt{-5})(1 - \sqrt{-5}). It is routine to show that 2, 3, 1 + \sqrt{-5}, 1 - \sqrt{-5} are irreducible, but we will not do that now.

Theorem
Let \(R \) be any ring, and \(a \in R \). Then \(a0 = 0 = 0a \).

Proof.
We can use the distributive law to get:
\[
\begin{align*}
a0 &= a(0 + 0) \\
0 &= a0 + a0 \\
(a0) + (-a0) &= (a0 + a0) + (-a0) \\
o &= a0 + (a0 + (-a0)) \\
o &= a0
\end{align*}
\]
Similarly, \(0a = 0 \).

Theorem (A negative times a negative is a positive)
Let \(R \) be any ring, and \(a, b \in R \). Then \((-a)(-b) = ab\).

Proof.
We will show that \((-ab) + a(-b) = 0\), thereby proving that \(a(-b) = -(ab)\). Proving that \((-a)b = -(ab)\) would be similar, but will not be done here. Again, by the distributive property:
\[
\begin{align*}
(ab) + a(-b) &= a(b + (-b)) \\
&= a(0) \\
&= 0
\end{align*}
\]
Theorem
Let R be any ring, and $a, b \in R$. Then $-(-a) = a$, $-(a + b) = -a - b$, and $-(a - b) = -a + b$.

Proof.
These facts following directly from the fact that $(R, +)$ is an abelian group. We just use the facts that we already proved about groups.

Theorem
Let R be any ring with unity. Then its unity is unique.

Proof.
Let 1 and $1'$ be unities for R. Then $1' = 11' = 1$.

Theorem
Let R be any ring with unity and $a \in R$ be a unit. Then a^{-1} is unique.

Proof.
Let $b, c \in R$ both be multiplicative inverses for a. Then $ab = 1 = ac$, so $ab = ac$. Then $(ba)b = (ba)c$, $1b = 1c$, and $b = c$.

Theorem (Cancellation in integral domains)
Let D be an integral domain with $a, b, c \in D$ and $a \neq 0$. Then if $ab = ac$, then $b = c$.

Proof.
Suppose $ab = ac$. Then $ab - ac = 0$, and $a(b - c) = 0$. Since there are no zero-divisors, we conclude that $b - c = 0$. So $b = c$.

Example
Note that the assumption that D is an integral domain is very important. If $D = \mathbb{Z}_6$ (not an integral domain), then $2(3) = 0 = 2(0)$, but $3 \neq 0$.
Theorem
If \(D \) is a finite integral domain, then \(D \) is a field.

Proof.
We must show that every non-zero element of \(D \) has an inverse. So let \(0 \neq a \in D \). If \(a = 1 \), then \(aa = 11 = 1 \), so \(a^{-1} = 1 = a \).
So assume \(a \neq 1 \). Then consider \(\{a, a^2, a^3, \ldots, a^{n+1}\} \) where \(n \) is the number of elements in \(D \). By the Pigeonhole Principle, there exists \(i, j \) with \(i > j \) such that \(a^i = a^j \). Then \(a^{i-j} = 1 \) by cancellation. So \(aa^{i-j-1} = 1 \), and \(a^{-1} = a^{i-j-1} \).

Theorem
Let \(p \) be a prime number. Then \(\mathbb{Z}_p \) is a field.

Proof.
By the previous theorem, it is sufficient to show that \(\mathbb{Z}_p \) has no zero divisors. Let \(a, b \in \mathbb{Z}_p \) such that \(ab = 0 \). By considering \(a \) and \(b \) to be elements of \(\mathbb{Z} \), we see that \(ab = np \) for some integer \(n \). Since \(p \) divides the right side, it also divides the left side \(ab \). But then \(p \mid a \) or \(p \mid b \). Therefore, either \(a = 0 \) or \(b = 0 \) in \(\mathbb{Z}_p \).

Theorem
Let \(R \) be a ring with unity. If \(1 \) has finite order \(n \), then the characteristic of \(R \) is \(n \). If \(1 \) has infinite order, then the characteristic of \(R \) is 0.

Proof.
If \(1 \) has infinite order, then \(m(1) \neq 0 \) for any integer \(m \). Therefore, \(R \) has characteristic 0.
So suppose \(1 \) has order \(n \), and let \(a \in R \). Consider \(na \).

\[
na = a + a + \cdots + a \\
= a(1 + 1 + \cdots + 1) \\
= a(n1) \\
= a(0)
\]

Theorem
If \(D \) is an integral domain, then the characteristic of \(D \) is either prime or zero.

Proof.
If the order of \(1 \) is infinite, then \(D \) has characteristic 0 by the previous theorem. So suppose the order of \(1 \) is \(n \). Further suppose that \(n = lm \) for integers \(l, m \). Then \(0 = n(1) = (lm)(1) = (l(1))(m(1)) \).
Since \(D \) is an integral domain, either \(l(1) = 0 \) or \(m(1) = 0 \). Without loss of generality, assume \(m(1) = 0 \). Since \(n \) is the order of \(1 \), we conclude that \(m = n \) and \(l = 1 \).
Since this is true for any \(l, m \in \mathbb{Z} \), we conclude that \(n \) is prime.
Definition
A subset S of a ring R is called a subring if S is a ring under the operations of R.

Example
The ring $2\mathbb{Z}$ is a subring of \mathbb{Z}.

Example
The ring \mathbb{Z} is a subring of $\mathbb{Z}[i]$.

Theorem
A nonempty subset S of a ring R is a subring if $a - b$ and ab are in S for all $a, b \in S$.

Proof.
Since $a - b \in S$ for all $a, b \in S$, $(S, +)$ is a subgroup of the group $(R, +)$ by the ab^{-1} theorem from group theory. So S fulfills the first five axioms for rings from the previous slide. It remains to show $ab \in S$, $a(bc) = (ab)c$, $a(b + c) = ab + ac$, and $(b + c)a = ba + ca$ for all $a, b, c \in S$.

But $ab \in S$ by assumption, and the other axioms hold for all elements $a, b, c \in R$, so they certainly hold for all elements of S.

Example
The set $\{0, 3\}$ is a subring of \mathbb{Z}_6 and 3 is the unity!

Example
The set $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ with $a, b \in \mathbb{Z}$ is a subring of $M_2(\mathbb{Z})$.

Example
Let R be any ring. Then R and $\{0\}$ are subrings of R.

Bret Benesh Rings and Integral Domains (Chapters 12 and 13)