The de Broglie-Bohr Model for the Hydrogen Atom

\[\lambda = \frac{h}{m \cdot v} \]

de Broglie's hypothesis that matter has wave-like properties.

\[n \cdot \lambda = 2 \cdot \pi \cdot r \]

The consequence of de Broglie's hypothesis; an integral number of wavelengths must fit within the circumference of the orbit. This introduces the quantum number, \(n \), which can have values 1, 2, 3, ...

\[m \cdot v = \frac{n \cdot h}{2 \cdot \pi \cdot r} \]

Substitution of the first equation into the second equation reveals that linear momentum is quantized.

\[T = \frac{1}{2} m \cdot v^2 = \frac{n^2 \cdot h^2}{8 \cdot \pi^2 \cdot m_e \cdot r^2} \]

If momentum is quantized, so is kinetic energy.

\[E = T + V = \frac{n^2 \cdot h^2}{8 \cdot \pi^2 \cdot m_e \cdot r^2} - \frac{q^2}{4 \cdot \pi \cdot \varepsilon_0 \cdot r} \]

Which means that total energy is quantized.

Below the ground state energy and orbit radius of the electron in the hydrogen atom is found by plotting the energy as a function of the orbital radius. The ground state is the minimum in the curve.

Fundamental constants: electron charge, electron mass, Planck's constant, vacuum permittivity.

\[q := 1.6021777 \cdot 10^{-19} \text{ coul} \quad m_e := 9.10939 \cdot 10^{-31} \text{ kg} \]

\[h := 6.62608 \cdot 10^{-34} \text{ joule sec} \quad \varepsilon_0 := 8.85419 \cdot 10^{-12} \frac{\text{ coul}^2}{\text{ joule m}} \]

Conversion factors between meters and picometers and joules and atto joules.

\[pm := 10^{-12} \text{ m} \quad \text{ajoule} := 10^{-18} \text{ joule} \quad eV := 1.602177 \cdot 10^{-19} \text{ joule} \]

Setting the first derivative of the energy with respect to \(r \) equal to zero, yields the optimum value of \(r \).

\[\frac{d}{dr} \left(\frac{n^2 \cdot h^2}{8 \cdot \pi^2 \cdot m_e \cdot r^2} - \frac{q^2}{4 \cdot \pi \cdot \varepsilon_0 \cdot r} \right) = 0 \]

has solution(s)

\[\frac{n^2 \cdot h^2}{q^2} \cdot \frac{\varepsilon_0}{\pi \cdot m_e} \]

Substitution of this value of \(r \) back into the energy expression yields the energy gives the energy of the hydrogen atom in terms of the quantum number, \(n \), and the fundamental constants.

\[E = \frac{n^2 \cdot h^2}{8 \cdot \pi^2 \cdot m_e \cdot r^2} - \frac{q^2}{4 \cdot \pi \cdot \varepsilon_0 \cdot r} \]

by substitution, yields

\[E = \frac{-1}{8 \cdot n^2 \cdot h^2} \cdot \frac{m_e}{\varepsilon_0^2} \cdot q^4 \]

Calculate the allowed energy levels for the hydrogen atom:

\[n := 1, 2, 3, 4 \]

\[E_n := \frac{-1}{8 \cdot n^2 \cdot h^2} \cdot \frac{m_e}{\varepsilon_0^2} \cdot q^4 \]

\[\begin{align*}
E_n \text{ [ajoule]} &= \begin{pmatrix} -2.18 \\ -0.545 \\ -0.242 \\ -0.136 \\ -0.087 \end{pmatrix} \\
E_n \text{ [eV]} &= \begin{pmatrix} -13.606 \\ -3.401 \\ -1.512 \\ -0.85 \\ -0.544 \end{pmatrix}
\end{align*} \]

Prepared by Frank Rioux.